977 resultados para pulp and paper mill wastewater


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive in-situ testings has shown that blast fragmentation influences the performance of downstream processes in a mine, and as a consequence, the profit of the whole operation can be greatly improved through optimised fragmentation. Other unit operations like excavation, crushing and grinding can all be assisted by altering the blast-induced fragmentation. Experimental studies have indicated that a change in blasting practice would not only influence fragmentation but fragment strength as well. The strength of the fragments produced in a blast is clearly important to the performance of the crushing and grinding circuit as it affects the energy required to break the feed to a target product size. In order to validate the effect of blasting on fragment strength several lumps of granite were blasted, under controlled conditions, using three very different explosive products. The resulting fragments were subjected to standard comminution ore characterisation tests. Obtained comminution parameters were then used to simulate the performance of a SAG mill. Modelling results indicate that changes in post blast residual rock fragment strength significantly influences the performance of the SAG mill, producing up to a 20% increase in throughput. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research presented in this paper is part of an ongoing investigation into how best to support meaningful lab-based usability evaluations of mobile technologies. In particular, we report on a comparative study of (a) a standard paper prototype of a mobile application used to perform an early-phase seated (static) usability evaluation, and (b) a pseudo-paper prototype created from the paper prototype used to perform an early-phase,contextually-relevant, mobile usability evaluation. We draw some initial conclusions regarding whether it is worth the added effort of conducting a usability evaluation of a pseudo-paper prototype in a contextually-relevant setting during early-phase user interface development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research presented in this paper is part of an ongoing investigation into how best to support meaningful lab-based usability evaluations of mobile technologies. In particular, we report on a comparative study of (a) a standard paper prototype of a mobile application used to perform an early-phase seated (static) usability evaluation, and (b) a pseudo-paper prototype created from the paper prototype used to perform an early-phase,contextually-relevant, mobile usability evaluation. We draw some initial conclusions regarding whether it is worth the added effort of conducting a usability evaluation of a pseudo-paper prototype in a contextually-relevant setting during early-phase user interface development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elemental analysis can become an important piece of evidence to assist the solution of a case. The work presented in this dissertation aims to evaluate the evidential value of the elemental composition of three particular matrices: ink, paper and glass. In the first part of this study, the analytical performance of LIBS and LA-ICP-MS methods was evaluated for paper, writing inks and printing inks. A total of 350 ink specimens were examined including black and blue gel inks, ballpoint inks, inkjets and toners originating from several manufacturing sources and/or batches. The paper collection set consisted of over 200 paper specimens originating from 20 different paper sources produced by 10 different plants. Micro-homogeneity studies show smaller variation of elemental compositions within a single source (i.e., sheet, pen or cartridge) than the observed variation between different sources (i.e., brands, types, batches). Significant and detectable differences in the elemental profile of the inks and paper were observed between samples originating from different sources (discrimination of 87–100% of samples, depending on the sample set under investigation and the method applied). These results support the use of elemental analysis, using LA-ICP-MS and LIBS, for the examination of documents and provide additional discrimination to the currently used techniques in document examination. In the second part of this study, a direct comparison between four analytical methods (µ-XRF, solution-ICP-MS, LA-ICP-MS and LIBS) was conducted for glass analyses using interlaboratory studies. The data provided by 21 participants were used to assess the performance of the analytical methods in associating glass samples from the same source and differentiating different sources, as well as the use of different match criteria (confidence interval (±6s, ±5s, ±4s, ±3s, ±2s), modified confidence interval, t-test (sequential univariate, p=0.05 and p=0.01), t-test with Bonferroni correction (for multivariate comparisons), range overlap, and Hotelling's T2 tests. Error rates (Type 1 and Type 2) are reported for the use of each of these match criteria and depend on the heterogeneity of the glass sources, the repeatability between analytical measurements, and the number of elements that were measured. The study provided recommendations for analytical performance-based parameters for µ-XRF and LA-ICP-MS as well as the best performing match criteria for both analytical techniques, which can be applied now by forensic glass examiners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, urban planning has seen a rise in waterfront revitalization. This is important concerning Corner Brook, where the possible permanent closure of the Mill would have devastating consequences for the surrounding area. Corner Brook is located on the West Coast of Newfoundland, Canada, and has a population of 20,083 (WWW.statcan.ca, 2007). Corner Brook Pulp and Paper Ltd. (CBP&P) dominates the local economy and is located on the city's waterfront. With the realization that the heart of any city is the waterfront, if there is one present, many cities started revitalization trend in order to bring life back to the community and restore the local economy (Robertson, 1999). In the past, waterfronts were dominated with industry, shipping, and the navy. Today, the focus has shifted to leisure, recreation, tourism, and residential and commercial activity. Along with economic factors, the visual aspect of the waterfront is also Important (Albrecht, Bode, & Evers, 2003; Hoffman, 1999). Although this trend started out larger cities, such as Toronto, it has now spread to smaller centers, similar to the size of Corner Brook (Hoyle, 2000). What differs between the various sizes of the cities is what the main focus of the waterfront will be following the revitalization. With the tourism economy making a strong foothold in Newfoundland, the waterfront would provide the possibility to extend it even further. Yet, the most important aspects of the new waterfront will be to ensure environmentally safe measures (Slocombe, 1993) and making sure that as many jobs as possible will be generated. The generation of new jobs is especially important considering the loss of the Mill, which has provided the city and surrounding area with paying employment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.

The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.

In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.

I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.

Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elemental analysis can become an important piece of evidence to assist the solution of a case. The work presented in this dissertation aims to evaluate the evidential value of the elemental composition of three particular matrices: ink, paper and glass. In the first part of this study, the analytical performance of LIBS and LA-ICP-MS methods was evaluated for paper, writing inks and printing inks. A total of 350 ink specimens were examined including black and blue gel inks, ballpoint inks, inkjets and toners originating from several manufacturing sources and/or batches. The paper collection set consisted of over 200 paper specimens originating from 20 different paper sources produced by 10 different plants. Micro-homogeneity studies show smaller variation of elemental compositions within a single source (i.e., sheet, pen or cartridge) than the observed variation between different sources (i.e., brands, types, batches). Significant and detectable differences in the elemental profile of the inks and paper were observed between samples originating from different sources (discrimination of 87 – 100% of samples, depending on the sample set under investigation and the method applied). These results support the use of elemental analysis, using LA-ICP-MS and LIBS, for the examination of documents and provide additional discrimination to the currently used techniques in document examination. In the second part of this study, a direct comparison between four analytical methods (µ-XRF, solution-ICP-MS, LA-ICP-MS and LIBS) was conducted for glass analyses using interlaboratory studies. The data provided by 21 participants were used to assess the performance of the analytical methods in associating glass samples from the same source and differentiating different sources, as well as the use of different match criteria (confidence interval (±6s, ±5s, ±4s, ±3s, ±2s), modified confidence interval, t-test (sequential univariate, p=0.05 and p=0.01), t-test with Bonferroni correction (for multivariate comparisons), range overlap, and Hotelling’s T2 tests. Error rates (Type 1 and Type 2) are reported for the use of each of these match criteria and depend on the heterogeneity of the glass sources, the repeatability between analytical measurements, and the number of elements that were measured. The study provided recommendations for analytical performance-based parameters for µ-XRF and LA-ICP-MS as well as the best performing match criteria for both analytical techniques, which can be applied now by forensic glass examiners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the importance of Eucalyptus spp. in the pulp and paper industry, functional genomic approaches have only recently been applied to understand wood formation in this genus. We attempted to establish a global view of gene expression in the juvenile cambial region of Eucalyptus grandis Hill ex Maiden. The expression profile was obtained from serial analysis of gene expression (SAGE) library data produced from 3- and 6-year-old trees. Fourteen-base expressed sequence tags (ESTs) were searched against public Eucalyptus ESTs and annotated with GenBank. Altogether 43,304 tags were generated producing 3066 unigenes with three or more copies each, 445 with a putative identity, 215 with unknown function and 2406 without an EST match. The expression profile of the juvenile cambial region revealed the presence of highly frequent transcripts related to general metabolism and energy metabolism, cellular processes, transport, structural components and information pathways. We made a quantitative analysis of a large number of genes involved in the biosynthesis of cellulose, pectin, hemicellulose and lignin. Our findings provide insight into the expression of functionally related genes involved in juvenile wood formation in young fast-growing E. grandis trees.