924 resultados para protein kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antipsychotic drug, haloperidol, elicits the expression of neurotensin and c-fos mRNA in the dorsal lateral region of the striatum and produces an acute cataleptic response in rodents that correlates with the motor side effects of haloperidol in humans. Mice harboring a targeted disruption of the RIIβ subunit of protein kinase A have a profound deficit in cAMP-stimulated kinase activity in the striatum. When treated with haloperidol, RIIβ mutant mice fail to induce either c-fos or neurotensin mRNA and the acute cataleptic response is blocked. However, both wild-type and mutant mice become cataleptic when neurotensin peptide is directly injected into the lateral ventricle, demonstrating that the kinase deficiency does not interfere with the action of neurotensin but rather its synthesis and release. These results establish a direct role for protein kinase A as a mediator of haloperidol induced gene induction and cataleptic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied signaling mechanisms that stimulate exocytosis and luteinizing hormone secretion in isolated male rat pituitary gonadotropes. As judged by reverse hemolytic plaque assays, phorbol-12-myristate-13-acetate (PMA) stimulates as many gonadotropes to secrete as does gonadotropin-releasing hormone (GnRH). However, PMA and GnRH use different signaling pathways. The secretagogue action of GnRH is not very sensitive to bisindolylmaleimide I, an inhibitor of protein kinase C, but is blocked by loading cells with a calcium chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid. The secretagogue action of PMA is blocked by bisindolylmaleimide I and is not very sensitive to the intracellular calcium chelator. GnRH induces intracellular calcium elevations, whereas PMA does not. As judged by amperometric measurements of quantal catecholamine secretion from dopamine- or serotonin-loaded gonadotropes, the secretagogue action of PMA develops more slowly (in several minutes) than that of GnRH. We conclude that exocytosis of secretory vesicles can be stimulated independently either by calcium elevations or by activation of protein kinase C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effect of the cholinergic agonist carbachol on the spontaneous release of glutamate in cultured rat hippocampal cells. Spontaneous excitatory postsynaptic currents (sEPSCs) through glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type channels were recorded by means of the patch-clamp technique. Carbachol increased the frequency of sEPSCs in a concentration-dependent manner. The kinetic properties of the sEPSCs and the amplitude distribution histograms were not affected by carbachol, arguing for a presynaptic site of action. This was confirmed by measuring the turnover of the synaptic vesicular pool by means of the fluorescent dye FM 1–43. The carbachol-induced increase in sEPSC frequency was not mimicked by nicotine, but could be blocked by atropine or by pirenzepine, a muscarinic cholinergic receptor subtype M1 antagonist. Intracellular Ca2+ signals recorded with the fluorescent probe Fluo-3 indicated that carbachol transiently increased intracellular Ca2+ concentration. Since, however, carbachol still enhanced the sEPSC frequency in bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetate-loaded cells, this effect could not be attributed to the rise in intracellular Ca2+ concentration. On the other hand, the protein kinase inhibitor staurosporine as well as a down-regulation of protein kinase C by prolonged treatment of the cells with 4β-phorbol 12-myristate 13-acetate inhibited the carbachol effect. This argues for an involvement of protein kinase C in presynaptic regulation of spontaneous glutamate release. Adenosine, which inhibits synaptic transmission, suppressed the carbachol-induced stimulation of sEPSCs by a G protein-dependent mechanism activated by presynaptic A1-receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by phosphorylation on Thr and Tyr. Here we report the molecular cloning of a new member of the mammalian MAP kinase kinase group (MKK7) that functions as an activator of JNK. In vitro protein kinase assays demonstrate that MKK7 phosphorylates and activates JNK, but not the p38 or extracellular signal-regulated kinase groups of MAP kinase. Expression of MKK7 in cultured cells causes activation of the JNK signal transduction pathway. MKK7 is therefore established to be a novel component of the JNK signal transduction pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expansion of a CTG trinucleotide repeat in the 3′ untranslated region (UTR) of DMPK, the gene encoding myotonic dystrophy protein kinase, induces the dominantly inherited neuromuscular disorder myotonic dystrophy (DM). Transcripts containing the expanded trinucleotide are abundant in differentiated cultured myoblasts, and they are spliced and polyadenylylated normally. However, mutant transcripts never reach the cytoplasm in these nonmitotic cells; instead, they form stable clusters that are tightly linked to the nuclear matrix, which can prevent effective biochemical purification of these transcripts. In DM patients, reduced DMPK protein levels, consequent to nuclear retention of mutant transcripts, are probably a cause of disease development. Formation of nuclear foci is a novel mechanism for preventing transcript export and effecting a loss of gene function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of protein kinase C (PKC) protects the heart from ischemic injury; however, its mechanism of action is unknown, in part because no model for chronic activation of PKC has been available. To test whether chronic, mild elevation of PKC activity in adult mouse hearts results in myocardial protection during ischemia or reperfusion, hearts isolated from transgenic mice expressing a low level of activated PKCβ throughout adulthood (β-Tx) were compared with control hearts before ischemia, during 12 or 28 min of no-flow ischemia, and during reperfusion. Left-ventricular-developed pressure in isolated isovolumic hearts, normalized to heart weight, was similar in the two groups at baseline. However, recovery of contractile function was markedly improved in β-Tx hearts after either 12 (97 ± 3% vs. 69 ± 4%) or 28 min of ischemia (76 ± 8% vs. 48 ± 3%). Chelerythrine, a PKC inhibitor, abolished the difference between the two groups, indicating that the beneficial effect was PKC-mediated. 31P NMR spectroscopy was used to test whether modification of intracellular pH and/or preservation of high-energy phosphate levels during ischemia contributed to the cardioprotection in β-Tx hearts. No difference in intracellular pH or high-energy phosphate levels was found between the β-Tx and control hearts at baseline or during ischemia. Thus, long-term modest increase in PKC activity in adult mouse hearts did not alter baseline function but did lead to improved postischemic recovery. Furthermore, our results suggest that mechanisms other than reduced acidification and preservation of high-energy phosphate levels during ischemia contribute to the improved recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal pathogens perceive and respond to molecules from the plant, triggering pathogenic development. Transduction of these signals may use heterotrimeric G proteins, and it is thought that protein phosphorylation cascades are also important. We have isolated a mitogen-activated protein kinase homolog from the corn pathogen Cochliobolus heterostrophus to test its role as a component of the transduction pathways. The new gene, CHK1, has a deduced amino acid sequence 90% identical to Pmk1 of the rice blast fungus Magnaporthe grisea and 59% identical to Fus3 of Saccharomyces cerevisiae. A series of chk1 deletion mutants has poorly developed aerial hyphae, autolysis, and no conidia. No pseudothecia are formed when a cross between two Δchk1 mutants is attempted. The ability of Δchk1 mutants to infect corn plants is reduced severely. The growth pattern of hyphae on a glass surface is strikingly altered from that of the wild type, forming coils or loops, but no appressoria. This set of phenotypes overlaps only partially with that of pmk1 mutants, the homologous gene of the rice blast fungus. In particular, sexual and asexual sporulation both require Chk1 function in Cochliobolus heterostrophus, in contrast to Pmk1, but perhaps more similar to yeast, where Fus3 transmits the mating signal. Chk1 is required for efficient colonization of leaf tissue, which can be compared with filamentous invasive growth of yeast, modulated through another closely related mitogen-activated protein kinase, Kss1. Ubiquitous signaling elements thus are used in diverse ways in different plant pathogens, perhaps the result of coevolution of the transducers and their targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Candida albicans genes, CST20 and HST7, were cloned by their ability to suppress the mating defects of Saccharomyces cerevisiae mutants in the ste20 and ste7 genes, which code for elements of the mating mitogen-activated protein (MAP) kinase pathway. These Candida genes are both structural and functional homologs of the cognate Saccharomyces genes. The pattern of suppression in Saccharomyces is related to their presumptive position in the MAP kinase cascade. Null alleles of these genes were constructed in Candida. The Candida homozygous null mutants are defective in hyphal formation on some media, but are still induced to form hyphae by serum, showing that serum induction of hyphae is independent of the MAP kinase cascade. The Candida heterozygotes CST20/cst20 and HST7/hst7 are also defective in hyphal formation. This lack of dominance of the wild-type allele suggests that gene dosage is important in Candida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Abl is a ubiquitously expressed protein tyrosine kinase activated by DNA damage and implicated in two responses: cell cycle arrest and apoptosis. The downstream pathways by which c-Abl induces these responses remain unclear. We examined the effect of overexpression of c-Abl on the activation of mitogen-activated protein kinase pathways and found that overexpression of c-Abl selectively stimulated p38, while having no effect on c-Jun N-terminal kinase or on extracellular signal-regulated kinase. c-Abl-induced p38 activation was primarily mediated by mitogen-activated protein kinase kinase (MKK)6. A C-terminal truncation mutant of c-Abl showed no activity for stimulating p38 and MKK6, while a kinase-deficient c-Abl mutant still retained a residual activity. We tested different forms of c-Abl for their ability to induce apoptosis and found that apoptosis induction correlated with the activation of the MKK6-p38 kinase pathway. Importantly, dominant-negative MKK6, but not dominant-negative MKK3 or p38, blocked c-Abl-induced apoptosis. Because overexpression of p38 blocks cell cycle G1/S transition, we also tested whether the MKK6-p38 pathway is required for c-Abl-induced cell cycle arrest, and we found that neither MKK6 nor p38 dominant-negative mutants could relieve c-Abl-induced cell cycle arrest. Finally, DNA damage-induced MKK6 and p38 activation was diminished in c-Abl null fibroblasts. Our study suggests that c-Abl is required for DNA damage-induced MKK6 and p38 activation, and that activation of MKK6 by c-Abl is required for c-Abl-induced apoptosis but not c-Abl-induced cell cycle arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STAT1 is an essential transcription factor for macrophage activation by IFN-γ and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-α occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-γ-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-γ-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-α caused activation of p38 MAPK whereas IFN-γ did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-α production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKα and β but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-γ-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the RIα subunit of cAMP-dependent protein kinase (PKA) has been demonstrated in various human cancers. PKA has been suggested as a potential target for cancer therapy. The goal of the present study was to evaluate an anti-PKA antisense oligonucleotide (mixed-backbone oligonucleotide) as a therapeutic approach to human cancer treatment. The identified oligonucleotide inhibited the growth of cell lines of human colon cancer (LS174T, DLD-1), leukemia (HL-60), breast cancer (MCF-7, MDA-MB-468), and lung cancer (A549) in a time-, concentration-, and sequence-dependent manner. In a dose-dependent manner, the oligonucleotide displayed in vivo antitumor activity in severe combined immunodeficient and nude mice bearing xenografts of human cancers of the colon (LS174T), breast (MDA-MB-468), and lung (A549). The routes of drug administration were intraperitoneal and oral. Synergistic effects were found when the antisense oligonucleotide was used in combination with the cancer chemotherapeutic agent cisplatin. The pharmacokinetics of the oligonucleotide after oral administration of 35S-labeled oligonucleotide into tumor-bearing mice indicated an accumulation and retention of the oligonucleotide in tumor tissue. This study further provides a basis for clinical studies of the antisense oligonucleotide targeted to the RIα subunit of PKA (GEM 231) as a cancer therapeutic agent used alone or in combination with conventional chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myotonic dystrophy (DM) is associated with expansion of CTG repeats in the 3′-untranslated region of the myotonin protein kinase (DMPK) gene. The molecular mechanism whereby expansion of the (CUG)n repeats in the 3′-untranslated region of DMPK gene induces DM is unknown. We previously isolated a protein with specific binding to CUG repeat sequences (CUG-BP/hNab50) that possibly plays a role in mRNA processing and/or transport. Here we present evidence that the phosphorylation status and intracellular distribution of the RNA CUG-binding protein, identical to hNab50 protein (CUG-BP/hNab50), are altered in homozygous DM patient and that CUG-BP/hNab50 is a substrate for DMPK both in vivo and in vitro. Data from two biological systems with reduced levels of DMPK, homozygous DM patient and DMPK knockout mice, show that DMPK regulates both phosphorylation and intracellular localization of the CUG-BP/hNab50 protein. Decreased levels of DMPK observed in DM patients and DMPK knockout mice led to the elevation of the hypophosphorylated form of CUG-BP/hNab50. Nuclear concentration of the hypophosphorylated CUG-BP/hNab50 isoform is increased in DMPK knockout mice and in homozygous DM patient. DMPK also interacts with and phosphorylates CUG-BP/hNab50 protein in vitro. DMPK-mediated phosphorylation of CUG-BP/hNab50 results in dramatic reduction of the CUG-BP2, hypophosphorylated isoform, accumulation of which was observed in the nuclei of DMPK knockout mice. These data suggest a feedback mechanism whereby decreased levels of DMPK could alter phosphorylation status of CUG-BP/hNab50, thus facilitating nuclear localization of CUG-BP/hNab50. Our results suggest that DM pathophysiology could be, in part, a result of sequestration of CUG-BP/hNab50 and, in part, of lowered DMPK levels, which, in turn, affect processing and transport of specific subclass of mRNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian Cdk5 is a member of the cyclin-dependent kinase family that is activated by a neuron-specific regulator, p35, to regulate neuronal migration and neurite outgrowth. p35/Cdk5 kinase colocalizes with and regulates the activity of the Pak1 kinase in neuronal growth cones and likely impacts on actin cytoskeletal dynamics through Pak1. Here, we describe a functional homologue of Cdk5 in budding yeast, Pho85. Like Cdk5, Pho85 has been implicated in actin cytoskeleton regulation through phosphorylation of an actin-regulatory protein. Overexpression of CDK5 in yeast cells complemented most phenotypes associated with pho85Δ, including defects in the repression of acid phosphatase expression, sensitivity to salt, and a G1 progression defect. Consistent with the functional complementation, Cdk5 associated with and was activated by the Pho85 cyclins Pho80 and Pcl2 in yeast cells. In a reciprocal series of experiments, we found that Pho85 associated with the Cdk5 activators p35 and p25 to form an active kinase complex in mammalian and insect cells, supporting our hypothesis that Pho85 and Cdk5 are functionally related. Our results suggest the existence of a functionally conserved pathway involving Cdks and actin-regulatory proteins that promotes reorganization of the actin cytoskeleton in response to regulatory signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leucine-rich nuclear export signal (NES) is used by a variety of proteins to facilitate their delivery from the nucleus to the cytoplasm. One of the best-studied examples, protein kinase inhibitor (PKI), binds to the catalytic subunit of protein kinase A in the nucleus and mediates its rapid export to the cytoplasm. We developed a permeabilized cell assay that reconstitutes nuclear export mediated by PKI, and we used it to characterize the cytosolic factors required for this process. The two-step assay involves an import phase and an export phase, and quantitation is achieved by digital fluorescence microscopy. During the import phase, a fluorescent derivative of streptavidin is imported into the nuclei of digitonin-permeabilized HeLa cells. During the export phase, biotinylated PKI diffuses into the nucleus, binds to fluorescent streptavidin, and mediates export of the complex to the cytoplasm. Nuclear export of the PKI complex is cytosol dependent and can be stimulated by addition of the purified NES receptor, Crm1. HeLa cell cytosol treated with N-ethylmaleimide (NEM) or phenyl-Sepharose to inactivate or deplete Crm1, respectively, is still fully active in the PKI export assay. Significantly, the export activity can be depleted from cytosol by preadsorption with a protein conjugate that contains a functional NES. These data indicate that cytosol contains an export activity that is distinct from Crm1 and is likely to correspond to an NES receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the activity and function of mitogen-activated protein kinase (MAPK) during neural specification in Xenopus. Ectodermal MAPK activity increased between late blastula and midgastrula stages. At midgastrula, MAPK activity in both newly induced neural ectoderm and ectoderm overexpressing the anterior neural inducer noggin was 5-fold higher than in uninduced ectoderm. Overexpression of MAPK phosphatase-1 (MKP-1) in ectoderm inhibited MAPK activity and prevented neurectoderm-specific gene expression when the ectoderm was recombined with dorsal mesoderm or treated with fibroblast growth factor (FGF). Neurectoderm-specific gene expression was observed, however, in ectoderm overexpressing both noggin and MKP-1. To evaluate the role of MAPK in posterior regionalization, ectodermal isolates were treated with increasing concentrations of FGF and assayed for MAPK activity and neurectoderm-specific gene expression. Although induction of posterior neural ectoderm by FGF was accompanied by an elevation of MAPK activity, relative MAPK activity associated with posterior neural fate was no higher than that of ectoderm specified to adopt an anterior neural fate. Thus, increasingly posterior neural fates are not correlated with quantitative increases in MAPK activity. Because MAPK has been shown to down-regulate Smad1, MAPK may disrupt bone morphogenetic protein 4 (BMP-4) signaling during neural specification. Our results suggest that MAPK plays an essential role in the establishment of neural fate in vivo.