908 resultados para process dynamics
Resumo:
The paper investigates stochastic processes forced by independent and identically distributed jumps occurring according to a Poisson process. The impact of different distributions of the jump amplitudes are analyzed for processes with linear drift. Exact expressions of the probability density functions are derived when jump amplitudes are distributed as exponential, gamma, and mixture of exponential distributions for both natural and reflecting boundary conditions. The mean level-crossing properties are studied in relation to the different jump amplitudes. As an example of application of the previous theoretical derivations, the role of different rainfall-depth distributions on an existing stochastic soil water balance model is analyzed. It is shown how the shape of distribution of daily rainfall depths plays a more relevant role on the soil moisture probability distribution as the rainfall frequency decreases, as predicted by future climatic scenarios. © 2010 The American Physical Society.
Resumo:
We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3-6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses--using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2-7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.
Resumo:
We sought to map the time course of autobiographical memory retrieval, including brain regions that mediate phenomenological experiences of reliving and emotional intensity. Participants recalled personal memories to auditory word cues during event-related functional magnetic resonance imaging (fMRI). Participants pressed a button when a memory was accessed, maintained and elaborated the memory, and then gave subjective ratings of emotion and reliving. A novel fMRI approach based on timing differences capitalized on the protracted reconstructive process of autobiographical memory to segregate brain areas contributing to initial access and later elaboration and maintenance of episodic memories. The initial period engaged hippocampal, retrosplenial, and medial and right prefrontal activity, whereas the later period recruited visual, precuneus, and left prefrontal activity. Emotional intensity ratings were correlated with activity in several regions, including the amygdala and the hippocampus during the initial period. Reliving ratings were correlated with activity in visual cortex and ventromedial and inferior prefrontal regions during the later period. Frontopolar cortex was the only brain region sensitive to emotional intensity across both periods. Results were confirmed by time-locked averages of the fMRI signal. The findings indicate dynamic recruitment of emotion-, memory-, and sensory-related brain regions during remembering and their dissociable contributions to phenomenological features of the memories.
Resumo:
Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options.
Resumo:
In this paper, a knowledge-based approach is proposed for the management of temporal information in process control. A common-sense theory of temporal constraints over processes/events, allowing relative temporal knowledge, is employed here as the temporal basis for the system. This theory supports duration reasoning and consistency checking, and accepts relative temporal knowledge which is in a form normally used by human operators. An architecture for process control is proposed which centres on an historical database consisting of events and processes, together with the qualitative temporal relationships between their occurrences. The dynamics of the system is expressed by means of three types of rule: database updating rules, process control rules, and data deletion rules. An example is provided in the form of a life scheduler, to illustrate the database and the rule sets. The example demonstrates the transitions of the database over time, and identifies the procedure in terms of a state transition model for the application. The dividing instant problem for logical inference is discussed with reference to this process control example, and it is shown how the temporal theory employed can be used to deal with the problem.
Resumo:
A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation relates to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specifically formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. PACS numbers: 02.60.Cb, 07.05.Tp, 68.55.-a, 81.05.Tp
Resumo:
In this paper, the framework is described for the modelling of granular material by employing Computational Fluid Dynamics (CFD). This is achieved through the use and implementation in the continuum theory of constitutive relations, which are derived in a granular dynamics framework and parametrise particle interactions that occur at the micro-scale level. The simulation of a process often met in bulk solids handling industrial plants involving granular matter, (i.e. filling of a flat-bottomed bin with a binary material mixture through pneumatic conveying-emptying of the bin in core flow mode-pneumatic conveying of the material coming out of a the bin) is presented. The results of the presented simulation demonstrate the capability of the numerical model to represent successfully key granular processes (i.e. segregation/degradation), the prediction of which is of great importance in the process engineering industry.
Resumo:
We present practical modelling techniques for electromagnetically agitated liquid metal flows involving dynamic change of the fluid volume and shape during melting and the free surface oscillation. Typically the electromagnetic field is strongly coupled to the free surface dynamics and the heat-mass transfer. Accurate pseudo-spectral code and the k-omega turbulence model modified for complex and transitional flows with free surfaces are used for these simulations. The considered examples include magnetic suspension melting, induction scull remelting (cold crucible), levitation and aluminium electrolysis cells. The process control and the energy savings issues are analysed.
Resumo:
In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.
Resumo:
Compuational fluid dynamics (CFD) is used to help understand the gas flow characteristics in the wave soldering process. CFD has the ability to calculate (1) heal transfer, (2) fluid dynamics, and (3) oxygen concentration throughout the wave soldering machine. Understanding the impact of fluid dynamics on oxygen concentration is important as excessive oxygen at the solder bath can lead to high dross contents and hence poor solder joint quality on the printed circuit board. This paper describes the CFD modelling approach and illustrates its capability for a machine which has nitrogen injectors near the solder bath. Different magnitiutes of nitrogen flow rates are investigated and it is demonstrated how these effect the oxygen concentration at the bath surface.
Resumo:
Nitrogen is now used in wave soldering machines to help lower the amount of dross that can be formed on the solder bath surface. The paper provides details on the use of computational fluid dynamics in helping understand the flow profiles of nitrogen in a wave soldering machine and to predict the concentration of nitrogen and oxygen around the solder bath.
Computational fluid dynamics: advancements in technology for modeling iron and steelmaking processes
Resumo:
Computational fluid dynamics (CFD) software technology has formed the basis of many investigations into the behavior and optimization of primary iron and steelmaking processes for the last 25+ years. The objective of this contribution is to review the progress in CFD technologies over the last decade or so and how this can be brought to bear in advancing the process analysis capability of primary ferrous operations. In particular, progress on key challenges such as compute performance, fluid-structure transformation and interaction, and increasingly complex geometries are highlighted.
Resumo:
The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation
Resumo:
This paper presents the results of a packaging process based on the stencil printing of isotropic conductive adhesives (ICAs) that form the interconnections of flip-chip bonded electronic packages. Ultra-fine pitch (sub-100-mum), low temperature (100degC), and low cost flip-chip assembly is demonstrated. The article details recent advances in electroformed stencil manufacturing that use microengineering techniques to enable stencil fabrication at apertures sizes down to 20mum and pitches as small as 30mum. The current state of the art for stencil printing of ICAs and solder paste is limited between 150-mum and 200-mum pitch. The ICAs-based interconnects considered in this article have been stencil printed successfully down to 50-mum pitch with consistent printing demonstrated at 90-mum pitch size. The structural integrity or the stencil after framing and printing is also investigated through experimentation and computational modeling. The assembly of a flip-chip package based on copper column bumped die and ICA deposits stencil printed at sub-100-mum pitch is described. Computational fluid dynamics modeling of the print performance provides an indicator on the optimum print parameters. Finally, an organic light emitting diode display chip is packaged using this assembly process
Resumo:
In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported.