961 resultados para pressure controlled ignition
Resumo:
Patients with diabetes mellitus (DM) often have alterations of the autonomic nervous system (ANS), even early in their disease course. Previous research has not evaluated whether these changes may have consequences on adaptation mechanisms in DM, e.g. to mental stress. We therefore evaluated whether patients with DM who already had early alterations of the ANS reacted with an abnormal regulatory pattern to mental stress. We used the spectral analysis technique, known to be valuable and reliable in the investigation of disturbances of the ANS. We investigated 34 patients with DM without clinical evidence of ANS dysfunction (e.g. orthostatic hypotension) and 44 normal control subjects (NC group). No patients on medication known to alter ANS responses were accepted. The investigation consisted of a resting state evaluation and a mental stress task (BonnDet). In basal values, only the 21 patients with type 2 DM were different in respect to body mass index and systolic blood pressure. In the study parameters we found significantly lower values in resting and mental stress spectral power of mid-frequency band (known to represent predominantly sympathetic influences) and of high-frequency and respiration bands (known to represent parasympathetic influences) in patients with DM (types 1 and 2) compared with NC group (5.3 +/- 1.2 ms2 vs. 6.1 +/- 1.3 ms2, and 5.5 +/- 1.6 ms2 vs. 6.2 +/- 1.5 ms2, and 4.6 +/- 1.7 ms2 vs. 6.2 +/- 1.5 ms2, for resting values respectively; 4.7 +/- 1.4 ms2 vs. 5.9 +/- 1.2 ms2, and 4.6 +/- 1.9 ms2 vs. 5.6 +/- 1.7 ms2, and 3.7 +/- 2.1 ms2 vs. 5.6 +/- 1.7 ms2, for stress values respectively; M/F ratio 6/26 vs. 30/14). These differences remained significant even when controlled for age, sex, and body weight. However, patients with DM type 2 (and significantly higher body weight) showed only significant values in mental stress modulus values. There were no specific group effects in the patients with DM in adaptation mechanisms to mental stress compared with the NC group. These findings demonstrate that power spectral examinations at rest are sufficiently reliable to diagnose early alterations in ANS in patients with DM. The spectral analysis technique is sensitive and reliable in investigation of ANS in patients with DM without clinically symptomatic autonomic dysfunction.
Resumo:
OBJECT: The effect of normobaric hyperoxia (fraction of inspired O2 [FIO2] concentration 100%) in the treatment of patients with traumatic brain injury (TBI) remains controversial. The aim of this study was to investigate the effects of normobaric hyperoxia on five cerebral metabolic indices, which have putative prognostic significance following TBI in humans. METHODS: At two independent neurointensive care units, the authors performed a prospective study of 52 patients with severe TBI who were treated for 24 hours with 100% FIO2, starting within 6 hours of admission. Data for these patients were compared with data for a cohort of 112 patients who were treated in the past; patients in the historical control group matched the patients in our study according to their Glasgow Coma Scale scores after resuscitation and their intracranial pressure within the first 8 hours after admission. Patients were monitored with the aid of intracerebral microdialysis and tissue O2 probes. Normobaric hyperoxia treatment resulted in a significant improvement in biochemical markers in the brain compared with the baseline measures for patients treated in our study (patients acting as their own controls) and also compared with findings from the historical control group. In the dialysate the glucose levels increased (369.02 +/- 20.1 micromol/L in the control group and 466.9 +/- 20.39 micromol/L in the 100% O2 group, p = 0.001), whereas the glutamate and lactate levels significantly decreased (p < 0.005). There were also reductions in the lactate/glucose and lactate/pyruvate ratios. Intracranial pressure in the treatment group was reduced significantly both during and after hyperoxia treatment compared with the control groups (15.03 +/- 0.8 mm Hg in the control group and 12.13 +/- 0.75 mm Hg in the 100% O2 group, p < 0.005) with no changes in cerebral perfusion pressure. Outcomes of the patients in the treatment group improved. CONCLUSIONS: The results of the study support the hypothesis that normobaric hyperoxia in patients with severe TBI improves the indices of brain oxidative metabolism. Based on these data further mechanistic studies and a prospective randomized controlled trial are warranted.
Resumo:
BACKGROUND: Intradialytic exercise has been described to improve blood pressure stability and dialysis efficacy. However, comorbid conditions in the dialysis population often preclude the widespread use of active intradialytic exercise. Therefore, we investigated the effect of intradialytic transcutaneous muscle stimulation (TEMS) and passive cycling movements (PCMs) on blood pressure and dialysis efficacy in patients. STUDY DESIGN: Prospective, controlled, randomized, crossover investigation. SETTING ; PARTICIPANTS: Ten patients were randomly allocated to TEMS, PCMs, or no intervention (NI) for 9 consecutive dialysis sessions. INTERVENTION: Participants were studied with NI, PCMs using a motor-driven ergometer, and bilateral TEMS of the leg musculature. Individual dialysis prescriptions were unchanged during the investigation. OUTCOMES ; MEASUREMENTS: The effect of TEMS and PCMs on blood pressure and dialysis efficacy in patients was assessed. RESULTS: Mean blood pressure increased from 121/64 +/- 21/15 mm Hg with NI to 132/69 +/- 21/15 mm Hg (P < 0.001) during sessions with PCMs and 125/66 +/- 22/16 mm Hg (P < 0.05) during sessions with TEMS. Urea and phosphate removal during dialysis were significantly (P < 0.001) greater with TEMS (19.4 +/- 3.7 g/dialysis and 1,197 +/- 265 mg/dialysis) or PCMs (20.1 +/- 3.4 g/dialysis and 1,172 +/- 315 mg/dialysis) than with NI (15.1 +/- 3.9 g/dialysis and 895 +/- 202 mg/dialysis). Body weight, ultrafiltration, Kt/V, and increases in hemoglobin and albumin levels during dialysis did not differ among the NI, PCMs, and TEMS groups. LIMITATIONS: The study design does not allow extension of the findings to prolonged treatment. CONCLUSION: Future studies during longer observation periods will have to prove the persistence of these acute findings. Both TEMS and PCMs deserve future investigations in dialysis patients because they increase intradialytic blood pressure and facilitate urea and phosphate removal when applied short term.
Resumo:
Internal combustion engines are, and will continue to be, a primary mode of power generation for ground transportation. Challenges exist in meeting fuel consumption regulations and emission standards while upholding performance, as fuel prices rise, and resource depletion and environmental impacts are of increasing concern. Diesel engines are advantageous due to their inherent efficiency advantage over spark ignition engines; however, their NOx and soot emissions can be difficult to control and reduce due to an inherent tradeoff. Diesel combustion is spray and mixing controlled providing an intrinsic link between spray and emissions, motivating detailed, fundamental studies on spray, vaporization, mixing, and combustion characteristics under engine relevant conditions. An optical combustion vessel facility has been developed at Michigan Technological University for these studies, with detailed tests and analysis being conducted. In this combustion vessel facility a preburn procedure for thermodynamic state generation is used, and validated using chemical kinetics modeling both for the MTU vessel, and institutions comprising the Engine Combustion Network international collaborative research initiative. It is shown that minor species produced are representative of modern diesel engines running exhaust gas recirculation and do not impact the autoignition of n-heptane. Diesel spray testing of a high-pressure (2000 bar) multi-hole injector is undertaken including non-vaporizing, vaporizing, and combusting tests, with sprays characterized using Mie back scatter imaging diagnostics. Liquid phase spray parameter trends agree with literature. Fluctuations in liquid length about a quasi-steady value are quantified, along with plume to plume variations. Hypotheses are developed for their causes including fuel pressure fluctuations, nozzle cavitation, internal injector flow and geometry, chamber temperature gradients, and turbulence. These are explored using a mixing limited vaporization model with an equation of state approach for thermopyhysical properties. This model is also applied to single and multi-component surrogates. Results include the development of the combustion research facility and validated thermodynamic state generation procedure. The developed equation of state approach provides application for improving surrogate fuels, both single and multi-component, in terms of diesel spray liquid length, with knowledge of only critical fuel properties. Experimental studies are coupled with modeling incorporating improved thermodynamic non-ideal gas and fuel
Resumo:
Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing renewable portfolio standard (RPS). This leads to the need for a simple and accurate ethanol-gasoline blends combustion model that is applicable to one-dimensional engine simulation. A parametric combustion model has been developed, integrated into an engine simulation tool, and validated using SI engine experimental data. The parametric combustion model was built inside a user compound in GT-Power. In this model, selected burn durations were computed using correlations as functions of physically based non-dimensional groups that have been developed using the experimental engine database over a wide range of ethanol-gasoline blends, engine geometries, and operating conditions. A coefficient of variance (COV) of gross indicated mean effective pressure (IMEP) correlation was also added to the parametric combustion model. This correlation enables the cycle combustion variation modeling as a function of engine geometry and operating conditions. The computed burn durations were then used to fit single and double Wiebe functions. The single-Wiebe parametric combustion compound used the least squares method to compute the single-Wiebe parameters, while the double-Wiebe parametric combustion compound used an analytical solution to compute the double-Wiebe parameters. These compounds were then integrated into the engine model in GT-Power through the multi-Wiebe combustion template in which the values of Wiebe parameters (single-Wiebe or double-Wiebe) were sensed via RLT-dependence. The parametric combustion models were validated by overlaying the simulated pressure trace from GT-Power on to experimentally measured pressure traces. A thermodynamic engine model was also developed to study the effect of fuel blends, engine geometries and operating conditions on both the burn durations and COV of gross IMEP simulation results.
Resumo:
In-cylinder pressure transducers have been used for decades to record combustion pressure inside a running engine. However, due to the extreme operating environment, transducer design and installation must be considered in order to minimize measurement error. One such error is caused by thermal shock, where the pressure transducer experiences a high heat flux that can distort the pressure transducer diaphragm and also change the crystal sensitivity. This research focused on investigating the effects of thermal shock on in-cylinder pressure transducer data quality using a 2.0L, four-cylinder, spark-ignited, direct-injected, turbo-charged GM engine. Cylinder four was modified with five ports to accommodate pressure transducers of different manufacturers. They included an AVL GH14D, an AVL GH15D, a Kistler 6125C, and a Kistler 6054AR. The GH14D, GH15D, and 6054AR were M5 size transducers. The 6125C was a larger, 6.2mm transducer. Note that both of the AVL pressure transducers utilized a PH03 flame arrestor. Sweeps of ignition timing (spark sweep), engine speed, and engine load were performed to study the effects of thermal shock on each pressure transducer. The project consisted of two distinct phases which included experimental engine testing as well as simulation using a commercially available software package. A comparison was performed to characterize the quality of the data between the actual cylinder pressure and the simulated results. This comparison was valuable because the simulation results did not include thermal shock effects. All three sets of tests showed the peak cylinder pressure was basically unaffected by thermal shock. Comparison of the experimental data with the simulated results showed very good correlation. The spark sweep was performed at 1300 RPM and 3.3 bar NMEP and showed that the differences between the simulated results (no thermal shock) and the experimental data for the indicated mean effective pressure (IMEP) and the pumping mean effective pressure (PMEP) were significantly less than the published accuracies. All transducers had an IMEP percent difference less than 0.038% and less than 0.32% for PMEP. Kistler and AVL publish that the accuracy of their pressure transducers are within plus or minus 1% for the IMEP (AVL 2011; Kistler 2011). In addition, the difference in average exhaust absolute pressure between the simulated results and experimental data was the greatest for the two Kistler pressure transducers. The location and lack of flame arrestor are believed to be the cause of the increased error. For the engine speed sweep, the torque output was held constant at 203 Nm (150 ft-lbf) from 1500 to 4000 RPM. The difference in IMEP was less than 0.01% and the PMEP was less than 1%, except for the AVL GH14D which was 5% and the AVL GH15DK which was 2.25%. A noticeable error in PMEP appeared as the load increased during the engine speed sweeps, as expected. The load sweep was conducted at 2000 RPM over a range of NMEP from 1.1 to 14 bar. The difference in IMEP values were less 0.08% while the PMEP values were below 1% except for the AVL GH14D which was 1.8% and the AVL GH15DK which was at 1.25%. In-cylinder pressure transducer data quality was effectively analyzed using a combination of experimental data and simulation results. Several criteria can be used to investigate the impact of thermal shock on data quality as well as determine the best location and thermal protection for various transducers.
Resumo:
Nitric oxide has the potential to greatly improve intravascular measurements by locally inhibiting thrombus formation and dilating blood vessels. pH, the partial pressure of oxygen, and the partial pressure of carbon dioxide are three arterial blood parameters that are of interest to clinicians in the intensive care unit that can benefit from an intravascular sensor. This work explores fabrication of absorbance and fluorescence based pH sensing chemistry, the sensing chemistries' compatibility with nitric oxide, and a controllable nitric oxide releasing polymer. The pH sensing chemistries utilized various substrates, dyes, and methods of immobilization. Absorbance sensing chemistries used sol-gels, fumed silica particles, mesoporous silicon oxide, bromocresol purple, phenol red, bromocresol green, physical entrapment, molecular interactions, and covalent linking. Covalently linking the dyes to fumed silica particles and mesoporous silicon oxide eliminated leaching in the absorbance sensing chemistries. The structures of the absorbance dyes investigated were similar and bromocresol green in a sol-gel was tested for compatibility with nitric oxide. Nitric oxide did not interfere with the use of bromocresol green in a pH sensor. Investigated fluorescence sensing chemistries utilized silica optical fibers, poly(allylamine) hydrogel, SNARF-1, molecular interactions, and covalent linking. SNARF-1 covalently linked to a modified poly(allylamine) hydrogel was tested in the presence of nitric oxide and showed no interference from the nitric oxide. Nitric oxide release was controlled through the modulation of a light source that cleaved the bond between the nitric oxide and a sulfur atom in the donor. The nitric oxide donor in this work is S-nitroso-N-acetyl-D-penicillamine which was covalently linked to a silicone rubber made from polydimethylsiloxane. It is shown that the surface flux of nitric oxide released from the polymer films can be increased and decreased by increasing and decreasing the output power of the LED light source. In summary, an optical pH sensing chemistry was developed that eliminated the chronic problem of leaching of the indicator dye and showed no reactivity to nitric oxide released, thereby facilitating the development of a functional, reliable intravascular sensor.
Resumo:
BACKGROUND: Constipation is a significant side effect of opioid therapy. We have previously demonstrated that naloxone-3-glucuronide (NX3G) antagonizes the motility-lowering-effect of morphine in the rat colon. AIM: To find out whether oral NX3G is able to reduce the morphine-induced delay in colonic transit time (CTT) without being absorbed and influencing the analgesic effect. METHODS: Fifteen male volunteers were included. Pharmacokinetics: after oral administration of 0.16 mg/kg NX3G, blood samples were collected over a 6-h period. Pharmacodynamics: NX3G or placebo was then given at the start time and every 4 h thereafter. Morphine (0.05 mg/kg) or placebo was injected s.c. 2 h after starting and thereafter every 6 h for 24 h. CTT was measured over a 48-h period by scintigraphy. Pressure pain threshold tests were performed. RESULTS: Neither NX3G nor naloxone was detected in the venous blood. The slowest transit time was observed during the morphine phase, which was significantly different from morphine with NX3G and placebo. The pain perception was not significantly influenced by NX3G. CONCLUSIONS: Orally administered NX3G is able to reverse the morphine-induced delay of CTT in humans without being detected in peripheral blood samples. Therefore, NX3G may improve symptoms of constipation in-patients using opioid medication without affecting opioid-analgesic effects.
Resumo:
A fundamental combustion model for spark-ignition engine is studied in this report. The model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and in-cylinder pressure) under various engine operation conditions. The combustion model includes a turbulent propagation and eddy burning processes based on literature [1]. The turbulence propagation and eddy burning processes are simulated by zero-dimensional method and the flame is assumed as sphere. To predict pressure, temperature and other in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of this model match well with the engine test data under various engine speeds, loads, spark ignition timings and air fuel mass ratios. The developed model is used to study cyclic variation and combustion stability at lean (or diluted) combustion conditions. Several variation sources are introduced into the combustion model to simulate engine performance observed in experimental data. The relations between combustion stability and the introduced variation amount are analyzed at various lean combustion levels.
Resumo:
Experimental work and analysis was done to investigate engine startup robustness and emissions of a flex-fuel spark ignition (SI) direct injection (DI) engine. The vaporization and other characteristics of ethanol fuel blends present a challenge at engine startup. Strategies to reduce the enrichment requirements for the first engine startup cycle and emissions for the second and third fired cycle at 25°C ± 1°C engine and intake air temperature were investigated. Research work was conducted on a single cylinder SIDI engine with gasoline and E85 fuels, to study the effect on first fired cycle of engine startup. Piston configurations that included a compression ratio change (11 vs 15.5) and piston geometry change (flattop vs bowl) were tested, along with changes in intake cam timing (95,110,125) and fuel pressure (0.4 MPa vs 3 MPa). The goal was to replicate the engine speed, manifold pressure, fuel pressure and testing temperature from an engine startup trace for investigating the first fired cycle for the engine. Results showed bowl piston was able to enable lower equivalence ratio engine starts with gasoline fuel, while also showing lower IMEP at the same equivalence ratio compared to flat top piston. With E85, bowl piston showed reduced IMEP as compression ratio increased at the same equivalence ratio. A preference for constant intake valve timing across fuels seemed to indicate that flattop piston might be a good flex-fuel piston. Significant improvements were seen with higher CR bowl piston with high fuel pressure starts, but showed no improvement with low fuel pressures. Simulation work was conducted to analyze initial three cycles of engine startup in GT-POWER for the same set of hardware used in the experimentations. A steady state validated model was modified for startup conditions. The results of which allowed an understanding of the relative residual levels and IMEP at the test points in the cam phasing space. This allowed selecting additional test points that enable use of higher residual levels, eliminating those with smaller trapped mass incapable of producing required IMEP for proper engine turnover. The second phase of experimental testing results for 2nd and 3rd startup cycle revealed both E10 and E85 prefer the same SOI of 240°bTDC at second and third startup cycle for the flat top piston and high injection pressures. E85 fuel optimal cam timing for startup showed that it tolerates more residuals compared to E10 fuel. Higher internal residuals drives down the Ø requirement for both fuels up to their combustion stability limit, this is thought to be direct benefit to vaporization due to increased cycle start temperature. Benefits are shown for an advance IMOP and retarded EMOP strategy at engine startup. Overall the amount of residuals preferred by an engine for E10 fuel at startup is thought to be constant across engine speed, thus could enable easier selection of optimized cam positions across the startup speeds.
Resumo:
Melatonin has previously been suggested to affect hemostatic function but studies on the issue are scant. We hypothesized that, in humans, oral administration of melatonin is associated with decreased plasma levels of procoagulant hemostatic measures compared with placebo medication and that plasma melatonin concentration shows an inverse association with procoagulant measures. Forty-six healthy men (mean age 25 +/- 4 yr) were randomized, single-blinded, to either 3 mg of oral melatonin (n = 25) or placebo medication (n = 21). One hour thereafter, levels of melatonin, fibrinogen, and D-dimer as well as activities of coagulation factor VII (FVII:C) and VIII (FVIII:C) were measured in plasma. Multivariate analysis of covariance and regression analysis controlled for age, body mass index, mean arterial blood pressure, heart rate, and norepinephrine plasma level. Subjects on melatonin had significantly lower mean levels of FVIII:C (81%, 95% CI 71-92 versus 103%, 95% CI 90-119; P = 0.018) and of fibrinogen (1.92 g/L, 95% CI 1.76-2.08 versus 2.26 g/L, 95% CI 2.09-2.43; P = 0.007) than those on placebo explaining 14 and 17% of the respective variance. In all subjects, increased plasma melatonin concentration independently predicted lower levels of FVIII:C (P = 0.037) and fibrinogen (P = 0.022) explaining 9 and 11% of the respective variance. Melatonin medication and plasma concentration were not significantly associated with FVII:C and D-dimer levels. A single dose of oral melatonin was associated with lower plasma levels of procoagulant factors 60 min later. There might be a dose-response relationship between the plasma concentration of melatonin and coagulation activity.
Resumo:
Psychosocial stress might increase the risk of atherothrombotic events by setting off an elevation in circulating levels of the proinflammatory cytokine interleukin (IL)-6. We investigated the effect of aspirin and propranolol on the responsiveness of plasma IL-6 levels to acute psychosocial stress. For 5 days, 64 healthy subjects were randomized, double-blind, to daily oral aspirin 100mg plus long-acting propranolol 80 mg, aspirin 100mg plus placebo, long-acting propranolol 80 mg plus placebo, or placebo plus placebo. Thereafter, all subjects underwent the 13-min Trier Social Stress Test, which combines a preparation phase, a job interview, and a mental arithmetic task. Plasma IL-6 levels were measured in blood samples collected immediately pre- and post-stress, and 45 min and 105 min thereafter. The change in IL-6 from pre-stress to 105 min post-stress differed between subjects with aspirin medication and those without (p =0.033; eta p2=0.059). IL-6 levels increased less from pre-stress to 105 min post-stress (p <0.027) and were lower (p =0.010) at 105 min post-stress in subjects with aspirin than in subjects without aspirin. The significance of these results was maintained when controlling for gender, age, waist-to-hip ratio, mean arterial blood pressure, and smoking status. Medication with propranolol was not significantly associated with the stress-induced change in IL-6 levels. Also, aspirin and propranolol did not significantly interact in determining the IL-6 stress response. Aspirin but not propranolol attenuated the stress-induced increase in plasma IL-6 levels. This suggests one mechanism by which aspirin treatment might reduce the risk of atherothrombotic events triggered by acute mental stress.
Resumo:
BACKGROUND: The efficacy of granulocyte colony-stimulating factor (G-CSF) for coronary collateral growth promotion and thus impending myocardial salvage has not been studied so far, to our best knowledge. METHODS AND RESULTS: In 52 patients with chronic stable coronary artery disease, age 62+/-11 years, the effect on a marker of myocardial infarct size (ECG ST segment elevation) and on quantitative collateral function during a 1-minute coronary balloon occlusion was tested in a randomized, placebo-controlled, double-blind fashion. The study protocol before coronary intervention consisted of occlusive surface and intracoronary lead ECG recording as well as collateral flow index (CFI, no unit) measurement in a stenotic and a > or =1 normal coronary artery before and after a 2-week period with subcutaneous G-CSF (10 microg/kg; n=26) or placebo (n=26). The CFI was determined by simultaneous measurement of mean aortic, distal coronary occlusive, and central venous pressure. The ECG ST segment elevation >0.1 mV disappeared significantly more often in response to G-CSF (11/53 vessels; 21%) than to placebo (0/55 vessels; P=0.0005), and simultaneously, CFI changed from 0.121+/-0.087 at baseline to 0.166+/-0.086 at follow-up in the G-CSF group, and from 0.152+/-0.082 to 0.131+/-0.071 in the placebo group (P<0.0001 for interaction of treatment and time). The absolute change in CFI from baseline to follow-up amounted to +0.049+/-0.062 in the G-CSF group and to -0.010+/-0.060 in the placebo group (P<0.0001). CONCLUSIONS: Subcutaneous G-CSF is efficacious during a short-term protocol in improving signs of myocardial salvage by coronary collateral growth promotion.
Resumo:
In vivo observations of microcirculatory behavior during autoregulation and adaptation to varying myocardial oxygen demand are scarce in the human coronary system. This study assessed microvascular reactions to controlled metabolic and pressure provocation [bicycle exercise and external counterpulsation (ECP)]. In 20 healthy subjects, quantitative myocardial contrast echocardiography and arterial applanation tonometry were performed during increasing ECP levels, as well as before and during bicycle exercise. Myocardial blood flow (MBF; ml·min(-1)·g(-1)), the relative blood volume (rBV; ml/ml), the coronary vascular resistance index (CVRI; dyn·s·cm(-5)/g), the pressure-work index (PWI), and the pressure-rate product (mmHg/min) were assessed. MBF remained unchanged during ECP (1.08 ± 0.44 at baseline to 0.92 ± 0.38 at high-level ECP). Bicycle exercise led to an increase in MBF from 1.03 ± 0.39 to 3.42 ± 1.11 (P < 0.001). The rBV remained unchanged during ECP, whereas it increased under exercise from 0.13 ± 0.033 to 0.22 ± 0.07 (P < 0.001). The CVRI showed a marked increase under ECP from 7.40 ± 3.38 to 11.05 ± 5.43 and significantly dropped under exercise from 7.40 ± 2.78 to 2.21 ± 0.87 (both P < 0.001). There was a significant correlation between PWI and MBF in the pooled exercise data (slope: +0.162). During ECP, the relationship remained similar (slope: +0.153). Whereas physical exercise decreases coronary vascular resistance and induces considerable functional capillary recruitment, diastolic pressure transients up to 140 mmHg trigger arteriolar vasoconstriction, keeping MBF and functional capillary density constant. Demand-supply matching was maintained over the entire ECP pressure range.
Resumo:
This study tests whether cognitive failures mediate effects of work-related time pressure and time control on commuting accidents and near-accidents. Participants were 83 employees (56% female) who each commuted between their regular place of residence and place of work using vehicles. The Workplace Cognitive Failure Scale (WCFS) asked for the frequency of failure in memory function, failure in attention regulation, and failure in action execution. Time pressure and time control at work were assessed by the Instrument for Stress Oriented Task Analysis (ISTA). Commuting accidents in the last 12 months were reported by 10% of participants, and half of the sample reported commuting near-accidents in the last 4 weeks. Cognitive failure significantly mediated the influence of time pressure at work on near-accidents even when age, gender, neuroticism, conscientiousness, commuting duration, commuting distance, and time pressure during commuting were controlled for. Time control was negatively related to cognitive failure and neuroticism, but no association with commuting accidents or near-accidents was found. Time pressure at work is likely to increase cognitive load. Time pressure might, therefore, increase cognitive failures during work and also during commuting. Hence, time pressure at work can decrease commuting safety. The result suggests a reduction of time pressure at work should improve commuting safety.