920 resultados para post-production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic analysis is presented of the economic consequences of the abnormally high concentration of Zambia's exports on a commodity whose price is exceptionally unstable. Zambian macro-economic variables in the post-independence years are extensively documented, showing acute instability and decline, particularly after the energy price revolution and the collapse of copper prices. The relevance of stabilization policies designed to correct short-term disequilibrium is questioned. It is, therefore, a pathological case study of externally induced economic instability, complementing other studies in this area which use cross-country analysis of a few selected variables. After a survey of theory and issues pertaining to development, finance and stabilization, the emergence of domestic and foreign financial constraints on the Zambian economy is described. The world copper industry is surveyed and an examination of commodity and world trade prices concludes that copper showed the highest degree of price instability. Specific aspects of Zambia's economy identified for detailed analysis include: its unprofitable mining industry, external payments disequilibrium, a constrained government budget, potentially inflationary monetary growth, and external indebtedness. International comparisons are used extensively, but major copper exporters are subjected to closer scrutiny. An appraisal of policy options concludes the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The role of applied theatre in engaging both lay and professional publics with debate on health policy and practice is an emergent field. This paper discusses the development, production performance and discussion of ‘Inside View’.1 Objectives The objectives were to produce applied theatre from research findings of a completed study on genetic prenatal screening, exploring the dilemmas for women and health professionals of prenatal genetic screening, and to engage audiences in debate and reflection on the dilemmas of prenatal genetic screening. Methods ‘Inside View’ was developed from a multidisciplinary research study through identification of emergent themes from qualitative interviews, and development of these by the writer, theatre producer and media technologist with input from the researchers. Findings Inside View was performed in London and the Midlands to varied audiences with a panel discussion and evaluation post performance. The audiences were engaged in debate that was relevant to them professionally and personally. Knowledge translation through applied theatre is an effective tool for engaging the public but the impact subsequently is unclear. There are ethical issues of unexpected disclosure during discussion post performance and the process of transforming research findings into applied theatre requires time and trust within the multidisciplinary team as well as adequate resourcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis looks at the UK onshore oil and gas production industry and follows the history of a population of firms over a fifteen-year period following the industry's renaissance. It examines the linkage between firm survival, selection pressures and adaptation responses at the firm level, especially the role of discretionary adaptation, specifically exploration and exploitation strategies.Taking a Realist approach and using quantitative and qualitative methods for triangulation on a new data base derived from archival data, as well as informant interviews, it tests seven hypotheses' about post-entry survival of firms. The quantitative findings suggest that firm survival within this industry is linked to discretionary adaptation, when measured at the firm level, and to a mixture of selection and adaptation forces when measured for each firm for each individual year. The qualitative research suggests that selection factors dominate. This difference in views is unresolved. However the small, sparse population and the nature of the oil and gas industry compared with other common research contexts such as manufacturing or service firms suggests the results be treated with caution as befits a preliminary investigation. The major findings include limited support for the theory that the external environment is the major determinant of firm survival, though environment components affect firms differentially; resolution of apparent literature differences relating to the sequencing of exploration and exploitation and potential tangible evidence of coevolution. The research also finds that, though selection may be considered important by industry players, discretionary adaptation appears to play the key role, and that the key survival drivers for thispopulation are intra-industry ties, exploitation experience and a learning/experience component. Selection has a place, however, in determining the life-cycle of the firm returning to be a key survival driver at certain ages of the firm inside the industry boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dwindling fossil fuel reserves, and growing concerns over CO2 emissions and associated climate change, are driving the quest for renewable feedstocks to provide alternative, sustainable fuel sources. Catalysis has a rich history of facilitating energy efficient, selective molecular transformations, and in a post-petroleum era will play a pivotal role in overcoming the scientific and engineering barriers to economically viable, and sustainable, biofuels derived from renewable resources. The production of second generation biofuels, derived from biomass sourced from inedible crop components, e.g. agricultural or forestry waste, or alternative non-food crops such as Switchgrass or Jatropha Curcas that require minimal cultivation, necessitate new heterogeneous catalysts and processes to transform these polar and viscous feedstocks [1]. Here we show how advances in the rational design of nanoporous solid acids and bases, and their utilisation in novel continuous reactors, can deliver superior performance in the energy-efficient esterification and transesterification of bio-oil components into biodiesel [2-4]. Notes: [1] K. Wilson, A.F. Lee, Cat. Sci. Tech. 2012 ,2, 884. [2] J. Dhainaut, J.-P. Dacquin, A. F. Lee, K. Wilson, Green Chem. 2010 , 12, 296. [3] C. Pirez, J.-M. Caderon, J.-P. Dacquin, A.F. Lee, K. Wilson, ACS Catal. 2012 , 2, 1607. [4] J.J. Woodford, J.-P. Dacquin, K. Wilson, A.F. Lee, Energy Environ. Sci. 2012 , 5, 6145.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book challenges the assumption that it is bad news when the economy doesn’t grow. For decades, it has been widely recognized that there are ecological limits to continuing economic growth and that different ways of living, working and organizing our economies are urgently required. This urgency has increased since the financial crash of 2007–2008, but mainstream economists and politicians are unable to think differently. The authors of this book demonstrate why our economic system demands ecologically unsustainable growth and the pursuit of more ‘stuff’. They believe that what matters is quality, not quantity – a better life based on having fewer material possessions, less production and less work. Such a way of life will emphasize well‑being, community, security and ‘conviviality’. That is, more real wealth. The book will therefore appeal to everyone curious as to how a new post-growth economics can be conceived and enacted. It will be of particular interest to policy makers, politicians, businesspeople, trade unionists, academics, students, journalists and a wide range of people working in the not-for-profit sector. All of the contributors are leading thinkers on green issues and members of the new think-tank Green House.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - Enterprise resource planning (ERP) systems are limited due to their operation around a fixed design production process and a fixed lead time to production plan and purchasing plan. The purpose of this paper is to define the concept of informality and to describe the notion of a system combining informality and ERP systems, based on empirical research from four manufacturing case studies. Design/methodology/approach - The case studies present a range of applications of ERP and are analysed in terms of the three characteristics of informality, namely, organisation structure, communication method and leadership approach. Findings - The findings suggest that systems consisting of informality in combination with ERP systems can elicit knowledge fromfrontlineworkers leading to timely improvements in the system. This is achieved by allowing users to modify work procedures or production orders, and to support collaborative working among all employees. However it was found that informality is not required for manufacturers with a relatively stable environment who can deal with uncertainty with a proactive strategy. Research limitations/implications - This study was carried out in China, with four companies as unit of analysis. Future work can help to extend this study across countries. Originality/value - The use of Four dimensions of informality that relate to manufacturers implementing ERP are defined as "technology in practice", "user flexibility", "trusted human networks" and "positive reaction to uncertainty". This is a new construct not applied before to ERP implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background aims: The selection of medium and associated reagents for human mesenchymal stromal cell (hMSC) culture forms an integral part of manufacturing process development and must be suitable for multiple process scales and expansion technologies. Methods: In this work, we have expanded BM-hMSCs in fetal bovine serum (FBS)- and human platelet lysate (HPL)-containing media in both a monolayer and a suspension-based microcarrier process. Results: The introduction of HPL into the monolayer process increased the BM-hMSC growth rate at the first experimental passage by 0.049 day and 0.127/day for the two BM-hMSC donors compared with the FBS-based monolayer process. This increase in growth rate in HPL-containing medium was associated with an increase in the inter-donor consistency, with an inter-donor range of 0.406 cumulative population doublings after 18 days compared with 2.013 in FBS-containing medium. Identity and quality characteristics of the BM-hMSCs are also comparable between conditions in terms of colony-forming potential, osteogenic potential and expression of key genes during monolayer and post-harvest from microcarrier expansion. BM-hMSCs cultured on microcarriers in HPL-containing medium demonstrated a reduction in the initial lag phase for both BM-hMSC donors and an increased BM-hMSC yield after 6 days of culture to 1.20 ± 0.17 × 105 and 1.02 ± 0.005 × 105 cells/mL compared with 0.79 ± 0.05 × 105 and 0.36 ± 0.04 × 105 cells/mL in FBS-containing medium. Conclusions: This study has demonstrated that HPL, compared with FBS-containing medium, delivers increased growth and comparability across two BM-hMSC donors between monolayer and microcarrier culture, which will have key implications for process transfer during scale-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All societies display attitudes to (varieties of) languages that tell us about the relative status of the groups that are associated to them. One method to document these is the systematic study of public discourses, including literary production. How (varieties of) languages are used, mentioned and characterised in a literary work tells us about their social status, and any change in this status should therefore be followed by changes in judgements on languages. This is demonstrated by the present paper with reference to the language attitudes in Nigeria, on the basis of two iconic Nigerian novels 2004 Purple Hibiscus and in 1958 classic postcolonial Things Fall Apart, separated by nearly fifty years. Ibo as well as Pidgin, Nigerian and European Englishes are presented in Purple Hibiscus in nuanced complementary configurations. A strong axiological polarisation is by contrast offered in Things Fall Apart between Ibo speakers and Ibo interpreters who are presented as cruel and ridiculous traitors siding with the English colonising power whose language, curiously, is not commented upon. Showing how a replicable method applied to language judgements can document social organisation and change, these results validate the view that the Nigerian society and culture has moved beyond the historically situated postcolonialist movement to embrace a globalised paradigm. © 2010 Taylor & Francis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rainbow smelt (Osmerus mordax) is an anadromous teleost that produces type II antifreeze protein (AFP) and accumulates modest urea and high glycerol levels in plasma and tissues as adaptive cryoprotectant mechanisms in sub-zero temperatures. It is known that glyceroneogenesis occurs in liver via a branch in glycolysis and gluconeogenesis and is activated by low temperature; however, the precise mechanisms of glycerol synthesis and trafficking in smelt remain to be elucidated. The objective of this thesis was to provide further insight using functional genomic techniques [e.g. suppression subtractive hybridization (SSH) cDNA library construction, microarray analyses] and molecular analyses [e.g. cloning, quantitative reverse transcription - polymerase chain reaction (QPCR)]. Novel molecular mechanisms related to glyceroneogenesis were deciphered by comparing the transcript expression profiles of glycerol (cold temperature) and non-glycerol (warm temperature) accumulating hepatocytes (Chapter 2) and livers from intact smelt (Chapter 3). Briefly, glycerol synthesis can be initiated from both amino acids and carbohydrate; however carbohydrate appears to be the preferred source when it is readily available. In glycerol accumulating hepatocytes, levels of the hepatic glucose transporter (GLUT2) plummeted and transcript levels of a suite of genes (PEPCK, MDH2, AAT2, GDH and AQP9) associated with the mobilization of amino acids to fuel glycerol synthesis were all transiently higher. In contrast, in glycerol accumulating livers from intact smelt, glycerol synthesis was primarily fuelled by glycogen degradation with higher PGM and PFK (glycolysis) transcript levels. Whether initiated from amino acids or carbohydrate, there were common metabolic underpinnings. Increased PDK2 (an inhibitor of PDH) transcript levels would direct pyruvate derived from amino acids and / or DHAP derived from G6P to glycerol as opposed to oxidation via the citric acid cycle. Robust LIPL (triglyceride catabolism) transcript levels would provide free fatty acids that could be oxidized to fuel ATP synthesis. Increased cGPDH (glyceroneogenesis) transcript levels were not required for increased glycerol production, suggesting that regulation is more likely by post-translational modification. Finally, levels of a transcript potentially encoding glycerol-3-phosphatase, an enzyme not yet characterized in any vertebrate species, were transiently higher. These comparisons also led to the novel discoveries that increased G6Pase (glucose synthesis) and increased GS (glutamine synthesis) transcript levels were part of the low temperature response in smelt. Glucose may provide increased colligative protection against freezing; whereas glutamine could serve to store nitrogen released from amino acid catabolism in a non-toxic form and / or be used to synthesize urea via purine synthesis-uricolysis. Novel key aspects of cryoprotectant osmolyte (glycerol and urea) trafficking were elucidated by cloning and characterizing three aquaglyceroporin (GLP)-encoding genes from smelt at the gene and cDNA levels in Chapter 4. GLPs are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. The highlight was the discovery that AQP10ba transcript levels always increase in posterior kidney only at low temperature. This AQP10b gene paralogue may have evolved to aid in the reabsorption of urea from the proximal tubule. This research has contributed significantly to a general understanding of the cold adaptation response in smelt, and more specifically to the development of a working scenario for the mechanisms involved in glycerol synthesis and trafficking in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first crystal structures of recombinant mammalian membrane proteins were solved in 2005 using protein that had been produced in yeast cells. One of these, the rabbit Ca2+-ATPase SERCA1a, was synthesized in Saccharomyces cerevisiae. All host systems have their specific advantages and disadvantages, but yeast has remained a consistently popular choice in the eukaryotic membrane protein field because it is quick, easy and cheap to culture, whilst being able to post-translationally process eukaryotic membrane proteins. Very recent structures of recombinant membrane proteins produced in S. cerevisiae include those of the Arabidopsis thaliana NRT1.1 nitrate transporter and the fungal plant pathogen lipid scramblase, TMEM16. This chapter provides an overview of the methodological approaches underpinning these successes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lorsque les aléas naturels se déroulent en catastrophes, les réponses des religieux, de l’Etat, et d’autres acteurs puissants dans une société révèlent à la fois les relations complexes entre ces parties et leur pouvoir dans la production des espaces auxquelles les survivants accèdent. La réponse en cas de catastrophe comprend la création d’espaces post-catastrophes, tels que des centres d’évacuation, des logements de transition et des sites de réinstallation permanente, qui ciblent spécifiquement un sous-ensemble particulier de survivants, et visent à les aider à survivre, à faire face, et à se remettre de la catastrophe. Les acteurs puissants dans une société dirigent les processus de secours, de récupération et de reconstruction sont des acteurs puissants qui cherchent à problématiser et à rendre un problème technique dans des termes qu’ils sont idéalement placés pour aborder à travers une variété d'interventions. Ce projet de recherche vise à répondre à la question: où les survivants d'une catastrophe reconstruisent-ils leurs vies et leurs moyens de subsistance? Il enquête sur un cas spécifique de la migration environnementale dans laquelle des dizaines de milliers d'habitants ont été déplacés de façon permanente et temporaire de leurs résidences habituelles après le typhon Sendong à Cagayan de Oro, Philippines en 2011. La recherche est basée sur des entretiens avec les acteurs puissants et les survivants, des vidéos participatives réalisées par des survivants pauvres urbains, et des activités de cartographie. L’étude se fonde sur la théorie féministe, les études de migration, les études dans la gouvernementalité, la recherche sur les changements de l’environnement planétaire, et les études régionales afin de situer les diverses expériences de la migration dans un contexte géographique et historique. Cette thèse propose une topographie critique dans laquelle les processus et les pratiques de production d’espaces post-catastrophe sont exposés. Parce que l’espace est nécessairement malléable, fluide, et relationnelle en raison de l'évolution constante des activités, des conflits, et des expériences qui se déroulent dans le paysage, une analyse de l'espace doit être formulée en termes de relations sociales qui se produisent dans et au-delà de ses frontières poreuses. En conséquence, cette étude explore comment les relations sociales entre les survivants et les acteurs puissants sont liées à l’exclusion, la gouvernementalité, la mobilité, et la production des espaces, des lieux et des territoires. Il constate que, si les trajectoires de migration de la plupart des survivants ont été confinés à l'intérieur des limites de la ville, les expériences de ces survivants et leur utilisation des espaces urbains sont très différentes. Ces différences peuvent être expliquées par des structures politiques, économiques, et sociales, et par les différences religieuses, économiques, et de genre. En outre, il fait valoir que les espaces post-catastrophe doivent être considérés comme des «espaces d’exclusion» où les fiduciaires exercent une rationalité gouvernementale. C’est-à-dire, les espaces post-catastrophe prétendument inclusives servent à marginaliser davantage les populations vulnérables. Ces espaces offrent aussi des occasions pour les acteurs puissants dans la société philippine d'effectuer des interventions gouvernementales dans lesquelles certaines personnes et les paysages sont simplifiées, rendues lisibles, et améliorés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes differences in plankton community structure and in chemical and physical gradients between the offshore West Greenland Current system and inland regions close to the Greenland Ice Sheet during the post-bloom in Godthabsfjorden (64° N, 51° W). The offshore region had pronounced vertical mixing, with centric diatoms and Phaeocystis spp. dominating the phytoplankton, chlorophyll (chl) a (0.3 to 3.9 µg/l) was evenly distributed and nutrients were depleted in the upper 50 m. Ciliates and heterotrophic dinoflagellates constituted equal parts of the protozooplankton biomass. Copepod biomass was dominated by Calanus spp. Primary production, copepod production and the vertical flux were high offshore. The water column was stratified in the fjord, causing chl a to be concentrated in a thin sub-surface layer. Nutrients were depleted above the pycnocline, and Thalassiosira spp. dominated the phytoplankton assemblage close to the ice sheet. Dinoflagellates dominated the protozooplankton biomass, whereas copepod biomass was low and was dominated by Pseudocalanus spp. and Metridia longa. Primary production was low in the outer part of the fjord but considerably higher in the inner parts of the fjord. Copepod production was exceeded by protozooplankton production in the fjord. The results of both physical/chemical factors and biological parameters suggest separation of offshore and fjord systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This interdisciplinary collection of essays focuses on critical and theoretical responses to the apocalypse of the late twentieth- and early twenty-first-century cultural production. Examining the ways in which apocalyptic discourses have had an impact on how we read the world’s globalised space, the traumatic burden of history, and the mutual relationship between language and eschatological belief, fifteen original essays by a group of internationally established and emerging critics reflect on the apocalypse, its past tradition, pervasive present and future legacy. The collection seeks to offer a new reading of the apocalypse, understood as a complex – and, frequently, paradoxical – paradigm of (contemporary) Western culture. The majority of published collections on the subject have been published prior to the year 2000 and, in their majority of cases, locate the apocalypse in the future and envision it as something imminent. This collection offers a post-millennial perspective that perceives "the end" as immanent and, simultaneously, rooted in the past tradition.