982 resultados para plant nutrition
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The production systems on substrates have been employed in most commercial cultivation of flowers and ornamental plants, including gerbera. However, its introduction as potted flower is recent in Brazil and many studies, especially those related to the determination of substrates physical and chemical properties, which contribute to production quality are still needed. The present study aimed to assess the influence of substrates characteristics for nutrient absorption and production of potted gerbera. The experiment was carried out in greenhouse with the experimental design in randomized blocks, factorial arrangement 5x2 (5 substrates and 2 cultivars) and 4 replications. Treatments consisted of substrates with different physical and chemical characteristics and gerbera cultivars (Cherry and Red). Plants grown on substrate with pH above 7.0 had a reduction in iron absorption, resulting in lower intensity of green coloration in the leaves. Plants grown on substrate with pH below 5.0 showed toxic levels of manganese and lower dry mass. The characteristics of the substrate, especially the pH, influence the nutrients absorption and the production of potted gerbera, altering the final plant quality.
Resumo:
The right choose of the cultivar influences greatly the potato yield. It is very important to know its agronomic behavior in the region where it is planted, as well its nutritional status, in order to supply the best package in the fertilization operations. In this work the tuber yield, the nutritional status of plants and the exportation of nutrients were studied in eighteen potato cultivars. A randomized blocks experimental design, with four replicates, was used. Mondial showed the highest total and commercial yields. The nutrient concentrations in fourth leaf of potato plant followed the decreasing order: N>K>Ca>P>Mg>B>Zn. The exportation of nutrients by the tubers followed the decreasing order: K>N>P>Mg>Ca. B and Zn had different behavior according the cultivars.
Resumo:
A deficiency of potassium at the beginning of the season affects the nutritional balance implicating the proper development of plants. The objective of this study was to evaluate the effect of potassium (K) in the root system development and production of dry matter of shoots of hybrid castor. The experiment was a 5 x 2 factorial scheme in a completely randomized design with four replications. The treatments consisted of five doses of K: 0, 25, 50, 100 and 200 ppm and two hybrids of castor (Lyra and Savana). After 45 days after emergence, there was a collection of shoot and root system of plants. The evaluations were: length, area, diameter and dry root and shoot. The addition of potassium caused increased root diameter at the hybrid Savana and reduced at the Lyra. The production of root and shoot dry of the hybrid Savana decreased with doses from 78 and 116 ppm of potassium, respectively.
Resumo:
The study was conducted to evaluate six K:Ca:Mg ratios for production of two cultivars of mini tomato grown in substrate, in a greenhouse, during two growing seasons. The experimental design was randomized blocks with four replications and twelve treatments using both cultivars of mini tomato (Sweet Million and Sweet Grape) and six K:Ca:Mg ratios (4:3:1, 6:3:1, 6:4.5:1, 2.7:3:1, 2.7:2:1, 4:2:1) in nutrient solutions. In both experiments, nutrient solutions with the highest concentrations of Mg, (75 mg L-1) and the lowest concentrations of Ca, (150 mg L-1) led to the highest concentrations of those nutrients in plant dry matter. The Sweet Million cultivar had higher yield (1.69 kg plant-1 and 1.52 kg plant-1), number of fruits per plant (227 and 236), and water use efficiency (29.1 kg m-3 and 25.3 kg m-3). However, the Sweet Grape cultivar had fruits of higher mean weight (9.0 g and 8.8 g) and macronutrient content in the leaves. In both crop cycles, the different K:Ca:Mg ratios affected only the macronutrient contents of the mini tomato plants grown in substrate, with no effect on yield and water use efficiency. The first crop cycle showed the highest N, K, Ca and S content.
Resumo:
The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm(-3) soil), 7 soil P levels supplied as phosphite (0-100 mg P dm(-3) soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm(-3) soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.
Resumo:
O objetivo deste trabalho foi quantificar o aporte e a remoção de nutrientes em sistemas de cultivo de cana‑de‑açúcar irrigados, ou não, com efluente de estação de tratamento de esgoto (EETE), com e sem adição de fosfogesso, bem como avaliar os efeitos desses sistemas de cultivo no estado nutricional das plantas. Foram avaliados tratamentos sem irrigação e com irrigação a 100 e 150% da necessidade hídrica da cultura. Os tratamentos com fosfogesso foram aplicados em área de terceiro corte, irrigada com EETE desde o plantio. As avaliações foram realizadas em duas safras. Os tratamentos não afetaram os rendimentos de colmos. O tratamento com EETE e fosfogesso apresentou efeito sinérgico sobre o conteúdo de nitrogênio e de enxofre nas plantas. O EETE beneficiou a nutrição das plantas quanto ao fósforo, mas não causou melhorias na nutrição com potássio e enxofre. A nutrição com ferro, zinco e manganês não foi influenciada pelo aporte desses micronutrientes pelo EETE. O fósforo e o nitrogênio aportados na irrigação com EETE devem ser considerados na recomendação de adubação. Porém, potássio, enxofre, ferro, zinco e manganês do efluente não são fontes eficientes desses nutrientes para as plantas.
Resumo:
A recuperação e a restauração florestal de ecossistemas degradados podem não acontecer das maneiras desejadas se houver carência nutricional ou suprimento inadequado de nutrientes às plantas no estádio inicial de desenvolvimento de espécies florestais nativas. Objetivou-se nesta investigação avaliar os efeitos da deficiência de nutrientes em plantas jovens de aroeira-pimenteira (Schinus terebinthifolius Raddi). Para isso, induziu-se a sintomatologia de deficiência nutricional, determinaram-se os teores de nutrientes nas folhas e caules, e foi feita a avaliação do efeito da deficiência nutricional na altura, na produção de massa seca e no estoque de carbono do caule em plantas jovens de aroeira-pimenteira. O experimento foi conduzido em casa de vegetação, em blocos ao acaso, com três repetições, totalizando treze tratamentos, empregando a técnica de diagnose por subtração (-N, -P, -K, -Ca, -Mg, -S, -B, -Cu, -Fe, -Mn, -Mo, -Zn), sendo que em um dos tratamentos, as plantas foram cultivadas em solução nutritiva com todos nutrientes. Durante o experimento, observou-se que a deficiência nutricional, além de propiciar o aparecimento de sintomas de deficiência que prejudicam o desenvolvimento vegetal, comprometeu também a produção de massa de plantas jovens de aroeira-pimenteira. Estes resultados claramente evidenciam o fato de que projetos de implantação de florestas ou de recuperação e restauração de ecossistemas degradados que utilizem a aroeira-pimenteira, em solos que necessitem de suplementação nutricional, poderão ter seu sucesso comprometido se não houver a complementação nutricional necessária.
Resumo:
The nutritional management of seedlings in the nursery is one of the most important practices that influence seedling quality. The aim of this work was to evaluate the effect of nitrogen, phosphorus and potassium on the development of Schizolobium amazonicum seedlings grown in 250 cm(3) containers with a commercial substrate in the North of Mato Grosso State, Brazil. The experimental design was completely randomized design with five treatments and five replications, each replication being represented by 24 seedlings. The treatments were: control (only commercial substrate); nitrogen fertilization (150 g m(-3) N using ammonium sulfate + 1.0 kg of ammonium sulfate dissolved in 100 L of water and applied in coverage); phosphorus fertilization (300 g P2O5 m(-3) using simple superphosphate); potassium fertilization (100 g m(-3) K2O using potassium chloride + 0.3 kg of potassium chloride dissolved in 100 L of water and applied in coverage) and; complete (a mixture of the three nutrients, 150, 300 and 100 g m(-3) N, P2O5 and K2O, respectively + 1.0 kg of ammonium sulfate + 0.3 kg of potassium chloride). The commercial substrate was composted milled pine bark plus vermiculite. Evaluations of the seedlings were performed at 90 days after sowing. The complete treatment (NPK) gave the highest values for biometric and best plant indices, which express the quality. When analyzing nutrients in isolation; potassium had the lowest effect. Based on these results it can be recommended to fertilize Schizolobium amazonicum seedlings in nurseries with 150, 300 and 100 g m(-3) of N, P2O5 and K2O, respectively, plus 1.0 kg of sulfate ammonium and 0.3 kg of potassium chloride applied in coverage.
Resumo:
Calcium (Ca) and boron (B) have been reported as the major macro-and micronutrient required for castor bean plant yield. The objective of this study was to determine the Ca: B ratios (in the growth media and plant tissue) for fruit yield and shoot dry weight of the castor bean (Ricinus communis L.), grown in a nutrient solution, and to evaluate Ca and B supply on concentration and total uptake of Ca, potassium (K), magnesium (Mg), and B, as well on the seed oil content. The treatments were arranged in a 3 x 3 factorial fashion, consisting of three rates of Ca (40, 80, and 160 mg L-1) and three of B (0.32, 0.96, and 1.60 mg L-1). Calcium and B rates increased the shoot and root dry weight and fruit yield at a Ca: B ratio in the nutrient solution of 166 and 100, respectively. Symptoms of B deficiency were observed in plants supplied with 0.32 mg B L-1, regardless of the Ca concentration in the nutrient solution. Plants which showed visual symptoms of Ca deficiency cultivated with 40 mg Ca L-1 presented concentration of Ca in plant tissue up to 10 g kg(-1). The concentration and total Ca and B uptake increased with the rates of them. Notwithstanding, the shoot Ca accumulation was improved by B rates. In addition, there were no decreases in K and Mg uptake due to Ca rates. Furthermore, addition of 80 mg L-1 of Ca and 1.60 mg L-1 of B in the growth media increased the seed oil content. The Ca: B ratio in the diagnostic leaf associated with the highest plant dry weight (shoot and root) and fruit yield, was 500 (16 to 20 g kg(-1) of Ca, and for 30 to 40 mg kg(-1) of B).
Resumo:
Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8-year-old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600?kg N ha1 y1, as NH4NO3) and two S rates (0 and 60?kg S ha1 y1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester-bonded S (19% to 42%), and C-bonded S (11% to 19%). Plant-available inorganic SO4-S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4-S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.
Concentração e redistribuição de nutrientes minerais nos diferentes estádios foliares de seringueira
Resumo:
A seringueira na fase adulta possui um crescimento intermitente com o processo de troca de folhas, que é caracterizado pela senescência. Esse é um mecanismo que as árvores utilizam para reciclarem os nutrientes, por meio dos ciclos bioquímico e biogeoquímico. Estudos sobre o ciclo bioquímico são necessários para verificar o comportamento dos nutrientes minerais, nos diferentes estádios foliares, pois a conservação desses é importante, visto que os seringais são implantados em solos de baixa fertilidade. Desse modo, este trabalho teve por objetivo avaliar a dinâmica dos nutrientes minerais, durante os diferentes estádios foliares da seringueira. As folhas utilizadas foram provenientes de plantas do clone RRIM-600, de um seringal localizado em Nepomuceno, MG. Foram selecionadas oito árvores adultas que possuíam folhas nos diferentes estádios (B1, B2, C e D) e as senescentes (Sen.). As folhas nos estádios B1, B2, C e D foram coletadas nos quatro pontos ortogonais e as senescentes foram coletadas no solo após a agitação mecânica dos galhos. Observou-se que os nutrientes N, P, K, S, Cu e Zn diminuíram os seus teores nos diferentes estádios foliares da seringueira. No entanto, para Ca, Mg, B, Fe e Mn, verificarou-se um comportamento inverso. A redistribuição dos nutrientes foi maior para N, P, K e Cu. A ordem relativa dos teores de macronutrientes encontrados nas folhas foi: N>K>Ca>Mg>S>P e, para os micronutrientes, a ordem foi: Mn>Fe>Zn>B>Cu.
Resumo:
The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm-3 soil), 7 soil P levels supplied as phosphite (0-100 mg P dm-3 soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm-3 soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.
Resumo:
O lodo de esgoto é um resíduo urbano-industrial que tem causado preocupação, quanto ao uso agrícola. Sua utilização pode ser viável, após a devida suplementação potássica, em substituição a fertilizantes minerais, especialmente em culturas como a do girassol. O presente trabalho objetivou avaliar a produtividade e nutrição mineral do girassol cv. CATISSOL 01, além da fertilidade de um Latossolo Vermelho eutroférrico adubado com lodo de esgoto, em comparação à adubação mineral, por dois anos consecutivos. O experimento utilizou delineamento em blocos casualizados, com 4 tratamentos (fertilização mineral, 5 t ha-1 ano-1, 10 t ha-1 ano-1 e 20 t ha-1 ano-1 de lodo de esgoto) e 5 repetições. Foram analisadas a produtividade de grãos de girassol, a concentração de macro e micronutrientes na folha diagnóstico e a fertilidade do solo. A produtividade de sementes do girassol adubado com o resíduo, em todas as doses, foi equivalente à adubação mineral, e os teores foliares situaram-se na faixa adequada, tanto para macro quanto para micronutrientes. O uso de lodo de esgoto, com suplementação potássica, mostrou-se eficiente na substituição total ou parcial da adubação mineral, sem prejudicar a produtividade da cultura do girassol.