870 resultados para pilot scale trials
Resumo:
This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Background - Pichia pastoris is a widely-used host for recombinant protein production; expression is typically driven by methanol-inducible alcohol oxidase (AOX) promoters. Recently this system has become an important source of recombinant G protein-coupled receptors (GPCRs) for structural biology and drug discovery. The influence of diverse culture parameters (such as pH, dissolved oxygen concentration, medium composition, antifoam concentration and culture temperature) on productivity has been investigated for a wide range of recombinant proteins in P. pastoris. In contrast, the impact of the pre-induction phases on yield has not been as closely studied. In this study, we examined the pre-induction phases of P. pastoris bioreactor cultivations producing three different recombinant proteins: the GPCR, human A2a adenosine receptor (hA2aR), green fluorescent protein (GFP) and human calcitonin gene-related peptide receptor component protein (as a GFP fusion protein; hCGRP-RCP-GFP). Results - Functional hA2aR was detected in the pre-induction phases of a 1 L bioreactor cultivation of glycerol-grown P. pastoris. In a separate experiment, a glycerol-grown P. pastoris strain secreted soluble GFP prior to methanol addition. When glucose, which has been shown to repress AOX expression, was the pre-induction carbon source, hA2aR and GFP were still produced in the pre-induction phases. Both hA2aR and GFP were also produced in methanol-free cultivations; functional protein yields were maintained or increased after depletion of the carbon source. Analysis of the pre-induction phases of 10 L pilot scale cultivations also demonstrated that pre-induction yields were at least maintained after methanol induction, even in the presence of cytotoxic concentrations of methanol. Additional bioreactor data for hCGRP-RCP-GFP and shake-flask data for GFP, horseradish peroxidase (HRP), the human tetraspanins hCD81 and CD82, and the tight-junction protein human claudin-1, demonstrated that bioreactor but not shake flask cultivations exhibit recombinant protein production in the pre-induction phases of P. pastoris cultures. Conclusions - The production of recombinant hA2aR, GFP and hCGRP-RCP-GFP can be detected in bioreactor cultivations prior to methanol induction, while this is not the case for shake-flask cultivations of GFP, HRP, hCD81, hCD82 and human claudin-1. This confirms earlier suggestions of leaky expression from AOX promoters, which we report here for both glycerol- and glucose-grown cells in bioreactor cultivations. These findings suggest that the productivity of AOX-dependent bioprocesses is not solely dependent on induction by methanol. We conclude that in order to maximize total yields, pre-induction phase cultivation conditions should be optimized, and that increased specific productivity may result in decreased biomass yields.
Resumo:
This study investigates the use of Pyroformer intermediate pyrolysis system to produce alternative diesel engines fuels (pyrolysis oil) from various biomass and waste feedstocks and the application of these pyrolysis oils in a diesel engine generating system for Combined Heat and Power (CHP) production. The pyrolysis oils were produced in a pilot-scale (20 kg/h) intermediate pyrolysis system. Comprehensive characterisations, with a view to use as engine fuels, were carried out on the sewage sludge and de-inking sludge derived pyrolysis oils. They were both found to be able to provide sufficient heat for fuelling a diesel engine. The pyrolysis oils also presented poor combustibility and high carbon deposition, but these problems could be mitigated by means of blending the pyrolysis oils with biodiesel (derived from waste cooking oil). The blends of SSPO (sewage sludge pyrolysis oil) and biodiesel (30/70 and 50/50 in volumetric ratios) were tested in a 15 kWe Lister type stationary generating system for up to 10 hours. There was no apparent deterioration observed in engine operation. With 30% SSPO blended into biodiesel, the engine presents better overall performance (electric efficiency), fuel consumption, and overall exhaust emissions than with 50% SSPO blend. An overall system analysis was carried out on a proposed integrated Pyroformer-CHP system. Combined with real experimental results, this was used for evaluating the costs for producing heat and power and char from wood pellets and sewage sludge. It is concluded that the overall system efficiencies for both types of plant can be over 40%; however the integrated CHP system is not economically viable. This is due to extraordinary project capital investment required.
Resumo:
Integration of renewable energy with desalination technologies has emerged as an attractive solution to augment fresh water supply sustainably. Fouling and scaling are still considered as limiting factors in membrane desalination processes. For brackish water treatment, pre-treatment of reverse osmosis (RO) feed water is a key step in designing RO plants avoiding membrane fouling. This study aims to compare at pilot scale the rejection efficiency of RO membranes with multiple pre-treatment options at different water recoveries (30, 35, 40, 45 and 50%) and TDS concentrations (3500, 4000, and 4500mg/L). Synthetic brackish water was prepared and performance evaluation were carried out using brackish water reverse osmosis (BWRO) membranes (Filmtec LC-LE-4040 and Hydranautics CPA5-LD-4040) preceded by 5 and 1μm cartridge filters, 0.02μm ultra-filtration (UF) membrane, and forward osmosis (FO) membrane using 0.25M NaCl and MgCl2 as draw solutions (DS). It was revealed that FO membrane with 0.25M MgCl2 used as a draw solution (DS) and Ultra-filtration (UF) membrane followed by Filmtec membrane gave overall 98% rejection but UF facing high fouling potential due to high applied pressure. Use of 5 and 1μm cartridge filter prior to Filmtec membrane also showed effective results with 95% salt rejection.
Resumo:
Surfactant enhanced subsurface remediation has gained importance in soil remediation. Since surfactants can be sorbed on soils, the concentration of free surfactant could drop below the critical micelle concentration, CMC, which may reduce the ability of the surfactant to solubilize the contaminants in soils. ^ The main goal of this research was to study the factors affecting the surfactant sorption on soil such as surfactant concentration, soil organic content, and organic contaminants in soil and to determine the organic contaminants removed from soils by surfactant. The results would be served as the basis for the implementation of a future study in the pilot scale and field scale for surfactant enhanced subsurface remediation. ^ This research study investigated the relationship between the organic content of soils and the sorption characteristics of a nonionic surfactant, Triton X-100. The experiments were performed using uncontaminated soils and soil contaminated with naphthalene and decane. The first part of the experiments were conducted in batch mode utilizing surface tension technique to determine the CMC of surfactant Triton X-100 and the effective CMC in the soil/aqueous system. The sorption of Triton X-100 was calculated from the surface tension measurements. The second part of the experiments utilized the SPME/GC/FID technique to determine the concentration of the contaminants solubilized from the soils by the surfactant Triton X-100 at different concentrations. ^ The results indicated that when the concentration of surfactant was lower than the CMC, the amount of surfactant sorbed on soil increased with the increasing surfactant concentration and the surfactant sorption characteristics of the uncontaminated soils could be modeled by the Freundlich isotherm. For the contaminated soils, the amount of surfactant sorbed was higher than those for the uncontaminated soils. The amount of surfactant sorbed on soils also depends on the organic content in the soils. The higher the organic content in the soil, higher is the amount of surfactant sorbed onto the soil. When the concentration of surfactant was higher than the CMC, the amount of surfactant added into the soil/aqueous system will increase the number of micelle and it increase the solubilization of organic contaminant from the soils. The ratio of the moles of organic contaminant solubilized to the moles of surfactant present as micelles is called the molar solubilization ratio (MSR). MSR value for naphthalene was about 0.16 for the soil-water systems. The organic content of soil did not appear to affect MSR for naphthalene. On the other hand, the MSR values for decane were 0.52, 0.39 and 0.38 for soils with 25%, 50% and 75% organic content, respectively. ^
Resumo:
A pilot scale multi-media filtration system was used to evaluate the effectiveness of filtration in removing petroleum hydrocarbons from a source water contaminated with diesel fuel. Source water was artificially prepared by mixing bentonite clay and tap water to produce a turbidity range of 10-15 NTU. Diesel fuel concentrations of 150 ppm or 750 ppm were used to contaminate the source water. The coagulants used included Cat Floc K-10 and Cat Floc T-2. The experimental phase was conducted under direct filtration conditions at constant head and constant rate filtration at 8.0 gpm. Filtration experiments were run until the filter reached its clogging point as noted by a measured peak pressure loss of 10 psi. The experimental variables include type of coagulant, oil concentration and source water. Filtration results were evaluated based on turbidity removal and petroleum hydrocarbon (PHC) removal efficiency as measured by gas chromatography. Experiments indicated that clogging was controlled by the clay loading on the filter and that inadequate destabilization of the contaminated water by the coagulant limited the PHC removal. ^
Resumo:
The objectives of this thesis were to (i) study the effect of increasing protein concentration in milk protein concentrate (MPC) powders on surface composition and sorption properties; (ii) examine the effect of increasing protein content on the rehydration properties of MPC; (iii) study the physicochemical properties of spraydried emulsion-containing powders having different water and oil contents; (iv) analyse the effect of protein type on water sorption and diffusivity properties in a protein/lactose dispersion, and; (v) characterise lactose crystallisation and emulsion stability of model infant formula containing intact or hydrolysed whey proteins. Surface composition of MPC powders (protein contents 35 - 86 g / 100 g) indicated that fat and protein were preferentially located on the surface of powders. Low protein powder (35 g / 100 g) exhibited lactose crystallisation, whereas powders with higher protein contents did not, due to their high protein: lactose ratio. Insolubility was evident in high protein MPCs and was primarily related to insolubility of the casein fraction. High temperature (50 °C) was required for dissolution of high protein MPCs (protein content > 60 g / 100 g). The effect of different oil types and spray-drying outlet temperature on the physicochemical properties of the resultant fat-filled powders was investigated and showed that increasing outlet temperature reduced water content, water activity and tapped bulk density, irrespective of oil type, and increased solvent-extractable free fat for all oil types and onset of glass transition (Tg) and crystallisation (Tcr) temperature. Powder dispersions of protein/lactose (0.21:1), containing either intact or hydrolysed whey protein (12 % degree of hydrolysis; DH), were spray-dried at pilot scale. Moisture sorption analysis at 25 °C showed that dispersions containing intact whey protein exhibited lactose crystallisation at a lower relative humidity (RH). Dispersions containing hydrolysed whey protein had significantly higher (P < 0.05) water diffusivity. Finally, a spray-dried model infant formula was produced containing hydrolysed or intact whey as the protein with sunflower oil as the fat source. Reconstituted, hydrolysed formula had a significantly (P < 0.05) higher fat globule size and lower emulsion stability than intact formula. Lactose crystallisation in powders occurred at higher RH for hydrolysed formula. In conclusion, this research has shown the effect of altering the protein type, protein composition, and oil type on the surface composition and physical properties of different dairy powders, and how these variations greatly affect their rehydration characteristics and storage stability.
Resumo:
In Canada, increases in rural development has led to a growing need to effectively manage the resulting municipal and city sewage without the addition of significant cost- and energy- expending infrastructure. Storring Septic Service Limited is a family-owned, licensed wastewater treatment facility located in eastern Ontario. It makes use of a passive waste stabilization pond system to treat and dispose of waste and wastewater in an environmentally responsible manner. Storring Septic, like many other similar small-scale wastewater treatment facilities across Canada, has the potential to act as a sustainable eco-engineered facility that municipalities and service providers could utilize to manage and dispose of their wastewater. However, it is of concern that the substantial inclusion of third party material could be detrimental to the stability and robustness of the pond system. In order to augment the capacity of the current facility, and ensure it remains a self-sustaining system with the capacity to safely accept septage from other sewage haulers, it was hypothesized that pond effluent treatment could be further enhanced through the incorporation of one of three different technology solutions, which would allow the reduction of wastewater quality parameters below existing regulatory effluent discharge limits put in place by Ontario’s Ministry of the Environment and Climate Change (MOECC). Two of these solutions make use of biofilm technologies in order to enhance the removal of wastewater parameters of interest, and the third utilizes the natural water filtration capabilities of zebra mussels. Pilot-scale testing investigated the effects of each of these technologies on treatment performance under both cold and warm weather operation. This research aimed to understand the important mechanisms behind biological filtration methods in order to choose and optimize the best treatment strategy for full-scale testing and implementation. In doing so, a recommendation matrix was elaborated provided with the potential to be used as a universal operational strategy for wastewater treatment facilities located in environments of similar climate and ecology.
Resumo:
At the Merrick Landfill, located outside of North Bay (Ontario, CA), an investigation into the potential for an environmental impact to the Little Sturgeon River as a result of landfill leachate discharge was undertaken using toxicity testing using 96 hour acute lethality on Oncorhynchus mykiss (Rainbow Trout). Landfill leachate may present a risk to receiving environments as it is comprised of an array of chemicals including organics, ammonia, and metals. Testing was conducted in three phases, firstly testing was completed on site throughout an existing natural attenuation zone where the presence of several groundwater seeps down gradient of the site had been identified to determine the effectiveness of the existing leachate control features at reducing the environmental risks. These tests indicated that the existing capture strategies were largely effective at reducing toxicity risks to the receiving environment. Testing was also completed on two pilot-scale hybrid-passive treatment systems to determine their effectiveness for leachate treatment. Summer performance of a constructed gravel wetland system was also shown to be effective at reducing the toxicity of the landfill leachate at the site. Lastly in order to support evaluation of leachate treatment requirements, a toxicity identification evaluation (TIE) was performed to determine the principle cause of toxicity within the leachate. Based on water chemistry analyses of samples collected at various locations at the site, the TIE identified ammonia toxicity as the primary source of toxicity in the leachate, with a secondary focus on metal toxicity.
Resumo:
Les concentrés de protéines de lait sont couramment utilisés comme ingrédients lors de la standardisation du lait de fromagerie. La concentration des protéines est généralement réalisée par ultrafiltration (UF) à l’aide de membranes polymériques ayant un seuil de coupure de 10 kDa, et ce, jusqu’à un facteur de concentration volumique de 3.5X. Dans l’optique d’améliorer l’efficience du procédé d’UF, l’étude avait pour but de caractériser l’impact du mode opératoire (pression transmembranaire constante (465 et 672 kPa) et flux constant) ainsi que la température (10°C et 50°C) sur la performance du système jusqu’à un facteur de concentration volumique de 3.6X. Le module de filtration à l’échelle pilote comprenait une membrane d’UF en polyéthersulfone de 10 kDa d’une surface de 2,04 m2. La performance du système a été caractérisée sur le flux de perméation, la sélectivité et la consommation énergétique totale. L’étude a montré que le flux de perméation était 1,9 fois plus élevé à une température de 50°C comparativement à 10°C lors de l’UF du lait. Le coefficient de rejet des protéines n’a pas été affecté significativement par la pression transmembranaire et la température (P< 0,05). L’effet de la température a été observé au niveau de la teneur en calcium, laquelle était plus élevée de 12% dans les rétentats générés à 50C. La consommation énergétique totale du système d’UF était plus élevée à 10C comparativement à 50C, représentant 0,32±0,02 et 0,26±0,04 kWh/kg rétentat respectivement. Les résultats montrent que le ratio d’efficience énergétique (rapport entre le flux de perméation et la consommation énergétique) optimal a été obtenu à faible pression transmembranaire constante et à 50C. L’approche développée dans le cadre de ce projet fournira des outils aux industriels laitiers pour améliorer l’éco-efficience de leurs procédés de séparation baromembranaire.
Resumo:
Formulated food systems are becoming more sophisticated as demand grows for the design of structural and nutritional profiles targeted at increasingly specific demographics. Milk protein is an important bio- and techno-functional component of such formulations, which include infant formula, sports supplements, clinical beverages and elderly nutrition products. This thesis outlines research into ingredients that are key to the development of these products, namely milk protein concentrate (MPC), milk protein isolate (MPI), micellar casein concentrate (MCC), β-casein concentrate (BCC) and serum protein concentrate (SPC). MPC powders ranging from 37 to 90% protein (solids basis) were studied for properties of relevance to handling and storage of powders, powder solubilisation and thermal processing of reconstituted MPCs. MPC powders with ≥80% protein were found to have very poor flowability and high compressibility; in addition, these high-protein MPCs exhibited poor wetting and dispersion characteristics during rehydration in water. Heat stability studies on unconcentrated (3.5%, 140°C) and concentrated (8.5%, 120°C) MPC suspensions, showed that suspensions prepared from high-protein MPCs coagulated much more rapidly than lower protein MPCs. β-casein ingredients were developed using membrane processing. Enrichment of β-casein from skim milk was performed at laboratory-scale using ‘cold’ microfiltration (MF) at <4°C with either 1000 kDa molecular weight cut-off or 0.1 µm pore-size membranes. At pilot-scale, a second ‘warm’ MF step at 26°C was incorporated for selective purification of micellised β-casein from whey proteins; using this approach, BCCs with β-casein purity of up to 80% (protein basis) were prepared, with the whey protein purity of the SPC co-product reaching ~90%. The BCC ingredient could prevent supersaturated solutions of calcium phosphate (CaP) from precipitating, although the amorphous CaP formed created large micelles that were less thermo-reversible than those in CaP-free systems. Another co-product of BCC manufacture, MCC powder, was shown to have superior rehydration characteristics compared to traditional MCCs. The findings presented in this thesis constitute a significant advance in the research of milk protein ingredients, in terms of optimising their preparation by membrane filtration, preventing their destabilisation during processing and facilitating their effective incorporation into nutritional formulations designed for consumers of a specific age, lifestyle or health status
Resumo:
Durante os últimos anos, a procura mundial de recursos energéticos renováveis tem sofrido um grande aumento. Neste grupo insere-se a biomassa, cuja conversão termoquímica, principalmente através de tecnologias de combustão e gasificação, é utilizada para a produção de energia térmica e elétrica. No processo de gasificação de biomassa é possível obter um combustível gasoso secundário com variadas aplicações, podendo inclusive servir como substituto do gás natural. No entanto, ao contrário da combustão, esta tecnologia aplicada à biomassa ainda está em fase de demonstração a nível industrial, apresentando algumas limitações em alguns aspetos tecnológicos, entre os quais a qualidade do gás produzido. Neste contexto, e com o objetivo de contribuir para o conhecimento da aplicabilidade desta tecnologia, surge o presente trabalho, onde a caracterização e definição das condições de operação de um gasificador de biomassa, bem como a caracterização do gás produzido foram objeto de estudo. Foi realizado um conjunto de experiências de gasificação direta, num reator de leito fluidizado borbulhante à escala piloto, com dois tipos de biomassa tipicamente encontrados em Portugal, e para diferentes condições de operação do gasificador, nomeadamente no que diz respeito à razão de equivalência. A biomassa utilizada consistiu em pellets comerciais de madeira e estilha de biomassa florestal residual derivada de pinheiro (Pinus pinaster), e resultante de operações florestais em Portugal. Na gama de temperatura do leito aplicada, tipicamente entre 800ºC e 875ºC, o reator funcionou em condições auto térmicas, isto é, sem a necessidade de recorrer a uma fonte de calor auxiliar externa. Em relação à composição do gás seco durante o processo de gasificação, os gases presentes em maior percentagem (em volume), para as experiências com ambos os tipos de biomassa, são o CO2 e o CO, com o primeiro a registar valores médios entre os 13.4% e os 16%, e o segundo entre 11.3% e 16.3%. Por ordem decrescente de concentração encontra-se o H2, na gama de 5.8% a 12.7%, o CH4 com valores médios entre 2.8% e 4.5%, e o C2H4 com concentrações médias entre 1.0% e 2.2%. Importa referir ainda a ausência de O2 no gás produzido. Verificou-se na concentração de H2, a principal diferença na composição do gás seco relativamente à gasificação dos dois combustíveis utilizados, com valores de concentração inferiores durante a operação com estilha de biomassa florestal residual derivada de pinheiro. Nas várias experiências realizadas, e para as condições operatórias utilizadas, observou-se que a razão de equivalência (RE) exerce um efeito significativo na composição do gás, verificando-se, genericamente, que com o aumento da RE a concentração de gases combustíveis diminui. Os valores de Poder Calorífico Inferior (PCI) obtidos para o gás seco produzido encontram-se na gama 3.4-5.6 MJ/Nm3, sendo que os valores mais elevados foram registados no decorrer dos ensaios de gasificação com pellets de madeira. Para ambos os combustíveis, o PCI do gás seco diminui com o aumento da RE.
Resumo:
Advanced oxidation processes (AOPs) are modern methods using reactive hydroxyl radicals for the mineralization of organic pollutants into simple inorganic compounds, such as CO2 and H2O. Among AOPs electrochemical oxidation (EO) is a method suitable for coloured and turbid wastewaters. The degradation of pollutants occurs on electrocatalytic electrodes. The majority of electrodes contain in their structure either expensive materials (diamond and Pt-group metals) or are toxic for the environment compounds (Sb or Pb). One of the main disadvantages of electrochemical method is the polarization and contamination of electrodes due to the deposition of reaction products on their surface, which results in diminishing of the process efficiency. Ultrasound combined with the electrochemical degradation process eliminates electrode contamination because of the continuous mechanical cleaning effect produced by the formation and collapse of acoustic cavitation bubbles near to the electrode surface. Moreover, high frequency ultrasound generates hydroxyl radicals at water sonolysis. Ultrasound-assisted EO is a non-selective method for oxidation of different organic compounds with high degradation efficiencies. The aim of this research was to develop novel sustainable and cost-effective electrodes working as electrocatalysts and test their activity in electrocatalytic oxidation of organic compounds such as dyes and organic acids. Moreover, the goal of the research was to enhance the efficiency of electrocatalytic degradation processes by assisting it with ultrasound in order to eliminate the main drawbacks of a single electrochemical oxidation such as electrodes polarization and passivation. Novel Ti/Ta2O5-SnO2 electrodes were developed and found to be electrocatalytically active towards water (with 5% Ta content, 10 oxide film layers) and organic compounds oxidation (with 7.5% Ta content, 8 oxide film layers) and therefore these electrodes can be applicable in both environmental and energy fields. The synergetic effect of combined electrolysis and sonication was shown while conducting sonoelectrochemical (EO/US) degradation of methylene blue (MB) and formic acid (FA). Complete degradation of MB and FA was achieved after 45 and 120 min of EO/US process respectively in neutral media. Mineralization efficiency of FA over 95% was obtained after 2 h of degradation using high frequency ultrasound (381, 863, 1176 kHz) combined with 9.1 mA/cm2 current density. EO/US degradation of MB provided over 75% mineralization in 8 h. High degradation kinetic rates and mineralization efficiencies of model pollutants obtained in EO/US experiments provide the preconditions for further extrapolation of this treatment method to pilot scale studies with industrial wastewaters.
Resumo:
Florações de cianobactérias nocivas ocorrem frequentemente em reservatórios brasileiros, devido ao incremento de nutrientes pela eutrofização e pelas mudanças climáticas, como o aquecimento global. Estas florações alteram a qualidade dos corpos hídricos, produzindo compostos de gosto e odor e cianotoxinas, que representam um problema para as Estações de Tratamento de Água (ETAs). Estes compostos, quando dissolvidos na água dificultam os tratamentos convencionais. Além das cianobacérias, um dinoflagelado exótico tem ocorrido em águas doces brasileiras, incluindo reservatórios utilizados para o abastecimento público. Os reservatórios de Caxias do Sul (RS – Brasil) são gerenciados pelo Serviço Autônomo Municipal de Água e Esgoto (SAMAE) e apresentam um histórico de florações de cianobactérias nocivas, como Dolichospermum Bory de Saint-Vincent ex Bornet & Flahault e Microcystis (Kützing) ex Lemmermann, dentre outras. Além disso, desde 2012, tem ocorrido nestes reservatórios florações de Ceratium furcoides. Este organismo quando em extensas florações tem sido relacionado à perda da qualidade dos corpos hídricos. O reservatório Maestra foi construído entre os anos de 1965-1970 e abastece 22% da população de Caxias do Sul. Este reservatório fornece água para a ETA Celeste Gobatto, que utiliza o método convencional de tratamento da água. Este trabalho esta estruturado em três capítulos. O primeiro consiste de uma revisão bibliográfica de assuntos relavantes acerca do histórico do monitoramento da qualidade dos reservatórios no Brasil, da biologia de algas e cianobactérias, e as principais cianotixinas e acidentes devido à intoxicação no Brasil. Além disso, é feita uma breve revisão sobre o tratamento convencional da água, mostrando a importância de cada etapa para a remoção das impurezas, de acordo com os padrões de potabilidade da Portaria 2914. O segundo capítulo é manuscrito na forma de artigo científico intítulado “Composição de algas, cianobactérias e cianotoxinas no reservatório Maestra – Caxias do Sul, RS – Brasil”. Este estudo foi realizado entre janeiro de 2012 a abril de 2013. O terceiro capítulo consta de um manuscrito na forma de artigo científico, intitulado “Efeito do tratamento de água convencional na remoção de algas, cianobactérias e cianotoxinas em uma Estação de Tratamento de Água Convencional”. A eficiência de remoção foi avaliada em escala piloto, em uma Estação de Tratamento de Água de Caxias do Sul – RS a qual utiliza o método convencional de tratamento.
Resumo:
O crescimento da população mundial e a tentativa de substituição parcial dos combustíveis fósseis por novas fontes de energia têm levado a uma maior atenção quanto à possível escassez de alimentos e a carência de grandes áreas disponíveis para agricultura. Microalgas, por meio do metabolismo fotossintético, utilizam energia solar e gás carbônico como nutrientes para o crescimento. A microalga Spirulina pode ser utilizada como suplemento alimentar, na biofixação de CO2, como fonte de biocombustíveis e no tratamento de efluentes. A digestão anaeróbia da biomassa microalgal produz biogás e os resíduos deste processo podem ser utilizados como substrato para novos cultivos da microalga. O objetivo deste trabalho foi estudar a conversão de Spirulina sp. LEB-18 em biogás em escala piloto e produzir biomassa microalgal utilizando os efluentes bicarbonato e dióxido de carbono do processo anaeróbio como fonte de nutrientes. Spirulina foi utilizada como substrato na digestão anaeróbia para produção de biogás em escala piloto sob temperaturas variáveis (12- 38 °C). Efluente do processo anaeróbio foi adicionado (20 %, v/v) como fonte de carbono no cultivo da microalga para avaliar o crescimento e a composição da biomassa. A seguir foi avaliada a capacidade da microalga de remover CO2 presente no biogás através de biofixação para obtenção do biocombustível purificado. O biogás produzido sob as diferentes temperaturas apresentou entre 72,2 e 74,4 % de CH4, quando realizado nas temperaturas 12 a 21 °C e 26 a 38 °C, respectivamente. A redução na temperatura do processo anaeróbio provocou um decréscimo na conversão de biomassa em biogás (0,30 para 0,22 g.g-1 ), ocorrendo dentro da faixa adequada e segura para as bactérias metanogênicas (pH 6,9; alcalinidade entre 1706,0 e 2248,0 mg.L-1 CaCO3 e nitrogênio amoniacal 479,3 a 661,7 mg.L-1 ). Os cultivos de Spirulina sp. LEB-18 em efluente anaeróbio contendo 20 % (v/v) e meio Zarrouk modificado (NaHCO3 2,8 e 5,3 g.L-1 ) apresentaram velocidade específica máxima de crescimento entre 0,324 e 0,354 d-1 , produtividade volumétrica entre 0,280 e 0,297 g.L-1 .d-1 e produtividade areal entre 14,00 e 14,85 g.m-2 .d-1 , sem diferenças significativas (p > 0,05) entre as diferentes condições estudadas. Lipídios variaram entre 4,9 e 5,0 % com proporção de ácido linoleico maximizada nos meios com efluente e ácido alfa-linolênico reduzida nesses meios em comparação ao meio Zarrouk completo. Nos ensaios para avaliar a capacidade da microalga Spirulina sp. LEB-18 de remover CO2 contaminante no biogás, as máximas concentrações celulares e produtividades de biomassa variaram, respectivamente, entre 1,12 e 1,24 g.L-1 e 0,11 e 0,14 g.L-1 .d-1 , não apresentando diferenças significativas (p > 0,05) entre os ensaios. A maior fixação diária total (FDT) de dióxido de carbono obtida foi 58,01 % (v/v) em cultivos com adição de biogás contendo 25 % (v/v) CO2. Obteve-se biogás com 89,5 % (v/v) de CH4 após injeção em cultivos de Spirulina, no qual aproximadamente 45 % (v/v) do CO2 injetado foi fixado pela microalga, gerando biomassa para diversas aplicações e biogás purificado.