924 resultados para physical and chemical factors
Resumo:
It has been possible to identify two critical compositions in the IV-VI chalcogenide glassy system GexSe100-x by the anomalous variations of the high-pressure electrical resistivity behavior. The first critical composition, the chemical threshold, refers to the stoichiometric composition. The second critical composition, identified recently as the mechanical percolation threshold, is connected with the structural rigidity of the material.
Resumo:
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although it is believed that there is strong hybridization between the Cu(3d) and O(2p) orbitals in the layered cuprates and that the parent compounds such as La2CuO4 are charge-transfer gap insulators, very few models consider the Cu---O charge-transfer energy, Δ, or the hybridization strength, tpd, to be the important factors responsible for the superconductivity of these materials. Based on the crucial experimental observation that the relative intensity of the features in Cu(2p) photoemission of several families of cuprates varies systematically with the hole concentration, nh, we have been able to show that both these properties vary smoothly with Δ /tpd. More importantly, we show that the electronic polarizability of the CuO2 sheets, α , is sufficiently large to favour hole pairing and that the value α also depends on Δ/tpd. Both nh and α increase smoothly with decreasing Δ /tpd. Considering that the maximum Tc in the various cuprate families containing the same number of CuO2 sheets occurs around the same nh value (e.g., nh≈ 0.2 in cuprates with two CuO2 sheets). The present study demonstrates how Δ /tpd, α and such chemical bonding characteristics have an important bearing on the superconducting properties of the cuprates.
Resumo:
The presence of cell agglomerates has been found to influence significantly the rates of liquid drainage from static foams. The process of drainage has been modelled by considering the foam to be made of pentagonal dodecahedral bubbles yielding films, nearly horizontal and nearly vertical Plateau borders. The films are assumed to drain into both kinds of Plateau borders equally. The horizontal Plateau borders are assumed to receive liquid from the films and drain into the vertical Plateau borders, which, in turn, form the main flow paths for gravity drainage. The drainage process is assumed to be similar to that for pure liquid until a stage is reached where the size of the cell agglomerates become equivalent to those of films and Plateau borders. Thereafter, a squeezing flow mechanism has been formulated where the aggromerates deform and flow. The model based on the above assumptions has been verified against experimental results and has been found to predict not only drainage data but also the separation of cell agglomerates from broths.
Resumo:
In post-industrialised societies, food is more plentiful, accessible and palatable than ever before and technological development has reduced the need for physical activity. Consequently, the prevalence of obesity is increasing, which is problematic as obesity is related to a number of diseases. Various psychological and social factors have an important influence on dietary habits and the development of obesity in the current food-rich and sedentary environments. The present study concentrates on the associations of emotional and cognitive factors with dietary intake and obesity as well as on the role these factors play in socioeconomic disparities in diet. Many people cognitively restrict their food intake to prevent weight gain or to lose weight, but research on whether restrained eating is a useful weight control strategy has produced conflicting findings. With respect to emotional factors, the evidence is accumulating that depressive symptoms are related to less healthy dietary intake and obesity, but the mechanisms explaining these associations remain unclear. Furthermore, it is not fully understood why socioeconomically disadvantaged individuals tend to have unhealthier dietary habits and the motives underlying food choices (e.g., price and health) could be relevant in this respect. The specific aims of the study were to examine 1) whether obesity status and dieting history moderate the associations of restrained eating with overeating tendencies, self-control and obesity indicators; 2) whether the associations of depressive symptoms with unhealthier dietary intake and obesity are attributable to a tendency for emotional eating and a low level of physical activity self-efficacy; and 3) whether the absolute or relative importance of food choice motives (health, pleasure, convenience, price, familiarity and ethicality) contribute to the socioeconomic disparities in dietary habits. The study was based on a large population-based sample of Finnish adults: the participants were men (N=2325) and women (N=2699) aged 25-74 who took part in the DILGOM (Dietary, Lifestyle and Genetic Determinants of Obesity and Metabolic Syndrome) sub-study of the National FINRISK Study 2007. The participants weight, height, waist circumference and body fat percentage were measured in a health examination. Psychological eating styles (the Three-Factor Eating Questionnaire-R18), food choice motives (a shortened version of the Food Choice Questionnaire), depressive symptoms (the Center for Epidemiological Studies Depression Scale) and self-control (the Brief Self-Control Scale) were measured with pre-existing questionnaires. A validated food frequency questionnaire was used to assess the average consumption of sweet and non-sweet energy-dense foods and vegetables/fruit. Self-reported total years of education and gross household income were used as indicators of socioeconomic position. The results indicated that 1) restrained eating was related to a lower body mass index, waist circumference, emotional eating and uncontrolled eating, and to a higher self-control in obese participants and current/past dieters. In contrast, the associations were the opposite in normal weight individuals and those who had never dieted. Thus, restrained eating may be related to better weight control among obese individuals and those with dieting experiences, while among others it may function as an indicator of problems with eating and an attempt to solve them. 2) Emotional eating and depressive symptoms were both related to less healthy dietary intake, and the greater consumption of energy-dense sweet foods among participants with elevated depressive symptoms was attributable to the susceptibility for emotional eating. In addition, emotional eating and physical activity self-efficacy were both important in explaining the positive association between depressive symptoms and obesity. 3) The lower vegetable/fruit intake and higher energy-dense food intake among individuals with a low socioeconomic position were partly explained by the higher priority they placed on price and familiarity and the lower priority they gave to health motives in their daily food choices. In conclusion, although policy interventions to change the obesogenic nature of the current environment are definitely needed, knowledge of the factors that hinder or facilitate people s ability to cope with the food-rich environment is also necessary. This study implies that more emphasis should be placed on various psychological and social factors in weight control programmes and interventions.
Resumo:
This paper deals with the thermo-physical changes that a droplet undergoes when it is radiatively heated in a levitated environment. The heat and mass transport model has been developed along with chemical kinetics within a cerium nitrate droplet. The chemical transformation of cerium nitrate to ceria during the process is predicted using Kramers' reaction mechanism which justifies the formation of ceria at a very low temperature as observed in experiments. The rate equation modeled by Kramers is modified suitably to be applicable within the framework of a droplet, and predicts experimental results well in both bulk form of cerium nitrate and in aqueous cerium nitrate droplet. The dependence of dissociation reaction rate on droplet size is determined and the transient mass concentration of unreacted cerium nitrate is reported. The model is validated with experiments both for liquid phase vaporization and chemical reaction. Vaporization and chemical conversion are simulated for different ambient conditions. The competitive effects of sensible heating rate and the rate of vaporization with diffusion of cerium nitrate is seen to play a key role in determining the mass fraction of ceria formed within the droplet. Spatially resolved modeling of the droplet enables the understanding of the conversion of chemical species in more detail.
Resumo:
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. `Semi-arid' (500-800 mm of mean annual rainfall), `sub-humid' (800-1,200 mm/year) and `humid' (1,200-1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<+/- 5 %), EC versus TZ+ (similar to 0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is `hard' to `very hard' in terms of Ca-Mg hardness. Polluted wells are identified (> 40 % of pollution) and eliminated for the characterization. Piper's diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl similar to 14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration-depth profiles are in support of the geological stratification i.e., not approximate to 18 m of saprolite and similar to 25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into `deep' and `shallow' based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using `recharge-discharge' concept based on rainfall intensity instead of traditional monsoon-non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge-discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.
Resumo:
Undoped and (Co, Ag) co-doped ZnO nanostructure powders are synthesized by chemical precipitation method without using any capping agent and annealed in air ambient at 500 A degrees C for 1 h. Here, the Ag concentration is fixed at 5 mol% and Co concentration is increased from 0 to 5 mol%. The X-ray diffraction studies reveal that undoped and doped ZnO powders consist of pure hexagonal structure and nano-sized crystallites. The novel Raman peak at 530 cm(-1) has corroborated with the Co doped ZnO nanoparticles. Moreover, the PL studies reveal that as the Co doping concentration increases and it enters into ZnO lattice as substitutional dopant, it leads to the increase of oxygen vacancies (Vo) and zinc interstitials (Zn-i). From the magnetization measurements, it is noticed that the co-doped ZnO nanostructures exhibit considerably robust ferromagnetism i.e. 4.29 emu g(-1) even at room temperature. These (Co, Ag) co-doped ZnO nanopowders can be used in the fabrication of spintronic and optoelectronic device applications.
Resumo:
A theoretical model for gain saturation in gas flow and chemical lasers is presented. The theory is applicable to all possible numerical values of τ/τc, where τ is the characteristie flow time for the flowing gas to move across the laser action region and τc is the characteristic collision relaxation time. The saturation effects of the convection and the "source flow" of the inverted population are revealed. A general relation of gain coefficient and some new gain saturation laws are obtained. For the special case of τ/τc1, the present theoretical results agree with the experimental results on the "anomalous" saturation phenomena in the supersonic diffusion HF chemical laser determined recently by Gross and Coffer[8]. The theory also agrees with the measured results of saturation intensity varying with τ/τc in gas flow CO2 lasers[7]. For the special case of τ/τc1, the present theory is consistent with both the standard theory[1] for gas lasers where the gas has no macroscopic motion and the known gain saturation theory[2-5] for gas flow and chemical lasers.
Resumo:
A literature review of 50 titles including nearly all relevant publications ensures adequate basis on the present level of knowledge. The proposal includes (a) the determination of the biozoenosis and selected environmental factors, and (b) of fishery and stock data of the main fish and shellfish species. The ecological research studies physical and chemical variables of the estuarine waters (flow velocity and direction, water temperature, conductivity, pH, dissolved oxygen, salinity, nutrients such as ammonium, nitrite, phosphate, silicate, pollutants such as hybrocarbons, pesticides and heavy metals, biochemical oxygen demand, chemical oxygen demand), plankton (bacterio-phyto-and zooplankton), benthos, sediment. The fishery biological and fishery investigations include: number of villages and fishermen, number of boats and gears by type, length and weight data of the main fishery objects with concentration on the shrimps, species and numbers of fish parasites. The ecological variables were monitored at fixed stations on sections in the Cross-River Estuary, Calabar and Great Kwara Rivers two times per month during spring and neap tides. The fishery biological and fishery variables were obtained during spring and neap tide too. For the determination of the detailed methodology the ecological and fishery part of the progeamme should be started with frame surveys based on a larger number of stations. These frame surveys should be repeated from time to time. Both parts of the programme are based on three years duration. It seems already appropriate to continue the work with selected representative stations, villages and variables in form of a long-term data chain
Resumo:
This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions.
The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particle- phase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition.
Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0 – 4 h old. CO2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5 - 2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution.
Ground-based aerosol composition is reported for Pasadena, CA during the summer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol (LVOOA). The HOA/OA was only 0.08–0.23, indicating that most of Pasadena OA in the summer months is dominated by oxidized OA resulting from transported emissions that have undergone photochemistry and/or moisture-influenced processing, as apposed to only primary organic aerosol emissions. Airborne measurements and model predictions of aerosol composition are reported for the 2010 CalNex field campaign.
Resumo:
A review article discussing the degree of susceptibility of fish to outbreaks of disease and whether, besides from changes in the physical and chemical characteristics of the environment, this susceptibility is instrumental in determining whether or not pathogenic challenge results in disease. The article summarises a decade of work on this subject at the Windermere laboratory of the Freshwater Biological Association and suggests possible directions for future research. The article covers experimental design, effects of environmental stress (including discussion on the hypothalamic-pituitary-interrenal (HPI) axis in salmonid fish), sexual maturation, research areas for future development and evolutionary considerations. There are a number of accompanying figures and images.
Resumo:
Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.
Resumo:
The present investigation dealt with the climatic and some physico-chemical conditions of the Kaptai lake with respect to their monthly variation. Air temperature was found always higher than water temperature. Vertical variation in temperature (0.8-4.7°C) was observed in all months. The water level fluctuates appreciably throughout the year. Wide seasonal fluctuations were also noted in water transparency. The lake was found to be slightly hard and alkaline pH. Dissolved oxygen (DO) (6.4-9.1 mg/l) and free carbondioxide (4.7- 6.0 mg/l) contents showed favourable condition for aquatic lives. DO at different depth has shown no wide variation (1.0-2.4 mg/1). Conductivity ranged between 91.9±7.1 and 106.4 ±5.2 mS/cm.