920 resultados para phosphate availability
Resumo:
In a system in which fertilization is recommended, diagnosis of soil K availability and the establishment of critical levels are made difficult by the possibility of a contribution of non-exchangeable forms of K for plant nutrition. Due to its magnitude, this contribution is well diagnosed in long term experiments and in those which compare fertilization systems with positive and negative balances in terms of replacement of the K extracted by plants. The objective of this study was to evaluate K availability in a Hapludalf under fertilization for sixteen years with the addition of K doses. The study was undertaken in an experiment set up in 1991 and carried out until 2007 in the experimental area of the Soil Department of the Federal University of Santa Maria (Universidade Federal de Santa Maria - UFSM), in Santa Maria (RS), Brazil. The soil was a Typic Hapludalf submitted to four doses of K (0, 60, 120 and 180 kg ha-1 K2O) and subdivided in the second year, when 60 kg ha-1 of K2O were reapplied in the subplots in 0, 1, 2 and 3 times. As of the fifth year, the procedure was repeated. Grain yield above ground dry matter and total K content contained in the plant tissue were evaluated. Soil samples were collected, oven dried, ground, passed through a sieve and submitted to exchangeable K analysis by the Mehlich-1 extractor; non-exchangeable K by boiling HNO3 1 mol L-1 and total K by HF digestion. Potassium fertilization guidelines should foresee the establishment of a critical level as of which the recommended dose should accompany crop needs, which coincides with the quantity exported by the grain, without there being the need for the creation of broad ranges of K availability to predict K fertilization. In adopting the K fertilization recommendations proposed in this manner, there will not be K translocation in the soil profile.
Resumo:
The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pêra" orange orchard in northwest Paraná, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pêra" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (0-20 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pêra" orange trees.
Resumo:
Considerations on the interactions of P in the soil-plant system have a long history, but are still topical and not yet satisfactorily understood. One concern is the effect of liming before or after application of soluble sources on the crop yield and efficiency of available P under these conditions. The aim of this study was to evaluate the effect of soil acidity on availability of P from a soluble source, based on plant growth and chemical extractants. Nine soil samples were incubated with a dose of 200 mg kg-1 P in soil with different levels of previously adjusted acidity (pH H2O 4.5; 5.0; 5.5; 6.0 and 6.5) and compared to soils without P application. After 40 days of soil incubation with a P source, each treatment was limed again so that all pH values were adjusted to 6.5 and then sorghum was planted. After the first and second liming the P levels were determined by the extractants Mehlich-1, Bray-1 and Resin, and the fractionated inorganic P forms. In general, the different acidity levels did not influence the P availability measured by plant growth and P uptake at the studied P dose. For some soils however these values increased or decreased according to the initial soil pH (from 4.5 to 6.5). Plant growth, P uptake and P extractable by Mehlich-1 and Bray-1 were significantly correlated, unlike resin-extractable P, at pH values raised to 6.5. These latter correlations were however significant before the second liming. The P contents extracted by Mehlich-1 and Bray-1 were significantly correlated with each other in the entire test range of soil acidity, even after adjusting pH to 6.5, besides depending on the soil buffering capacity for P. Resin was also sensitive to the properties that express the soil buffering capacity for P, but less clearly than Mehlich-1 and Bray-1. The application of triple superphosphate tended to increase the levels of P-Al, P-Fe and P-Ca and the highest P levels extracted by Bray-1 were due to a higher occurrence of P-Al and P-Fe in the soils.
Resumo:
The eutrophication of aquifers is strongly linked to the mobility of P in soils. Although P mobility was considered irrelevant in a more distant past, more recent studies have shown that P, both in organic (Po) and inorganic forms (Pi), can be lost by leaching and eluviation through the soil profile, particularly in less weathered and/or sandier soils with low P adsorption capacity. The purpose of this study was to determine losses of P forms by leaching and eluviation from soil columns. Each column consisted of five PVC rings (diameter 5 cm, height 10 cm), filled with two soil types: a clayey Red-Yellow Latosol and a sandy loam Red-Yellow Latosol, which were exposed to water percolation. The soils were previously treated with four P rates (as KH2PO4 ) to reach 0, 12.5, 25.0 and 50 % of the maximum P adsorption capacity (MPAC). The P source was homogenized with the whole soil volume and incubated for 60 days. After this period the soils were placed in the columns; the soil of the top ring was mixed with five poultry litter rates of 0, 20, 40, 80, and 160 t ha-1 (dry weight basis). Treatments consisted of a 4 x 5 x 2 factorial scheme corresponding to four MPAC levels, five poultry litter rates, two soils, with three replications, arranged in a completely randomized block design. Deionized water was percolated through the columns 10 times in 35 days to simulate about 1,200 mm rainfall. In the leachate of each column the inorganic P (reactive P, Pi) and organic P forms (unreactive P, Po) were determined. At the end of the experiment, the columns were disassembled and P was extracted with the extractants Mehlich-1 (HCl 0.05 mol L-1 and H2SO4 0.0125 mol L-1) and Olsen (NaHCO3 0.5 mol L-1; pH 8.5) from the soil of each ring. The Pi and Po fractions were measured by the Olsen extractant. It was found that under higher poultry litter rates the losses of unreactive P (Po) were 6.4 times higher than of reactive P (Pi). Both the previous P fertilization and increasing poultry litter rates caused a vertical movement of P down the soil columns, as verified by P concentrations extracted by Mehlich-1 and NaHCO3 (Olsen). The environmental critical level (ECL), i.e., the P soil concentration above which P leaching increases exponentially, was 100 and 150 mg dm-3 by Mehlich-1 and 40 and 60 mg dm-3 by Olsen, for the sandy loam and clay soils, respectively. In highly weathered soils, where residual P is accumulated by successive crops, P leaching through the profile can be significant, particularly when poultry litter is applied as fertilizer.
Resumo:
Chronic renal failure (CRF) is associated with the development of secondary hyperparathyroidism and vascular calcifications. We evaluated the efficacy of PA21, a new iron-based noncalcium phosphate binder, in controlling phosphocalcic disorders and preventing vascular calcifications in uremic rats. Rats with adenine-diet-induced CRF were randomized to receive either PA21 0.5, 1.5, or 5% or CaCO3 3% in the diet for 4 weeks, and were compared with uremic and nonuremic control groups. After 4 weeks of phosphate binder treatment, serum calcium, creatinine, and body weight were similar between all CRF groups. Serum phosphorus was reduced with CaCO3 3% (2.06 mM; P ≤ 0.001), PA21 1.5% (2.29 mM; P < 0.05), and PA21 5% (2.21 mM; P ≤ 0.001) versus CRF controls (2.91 mM). Intact parathyroid hormone was strongly reduced in the PA21 5% and CaCO3 3% CRF groups to a similar extent (1138 and 1299 pg/ml, respectively) versus CRF controls (3261 pg/ml; both P ≤ 0.001). A lower serum fibroblast growth factor 23 concentration was observed in the PA21 5%, compared with CaCO3 3% and CRF, control groups. PA21 5% CRF rats had a lower vascular calcification score compared with CaCO3 3% CRF rats and CRF controls. In conclusion, PA21 was as effective as CaCO3 at controlling phosphocalcic disorders but superior in preventing the development of vascular calcifications in uremic rats. Thus, PA21 represents a possible alternative to calcium-based phosphate binders in CRF patients.
Resumo:
The 2007 Iowa General Assembly, recognizing the increased demand for water to support the growth of industries and municipalities, approved funding for the first year of a multi-year evaluation and modeling of Iowa’s major aquifers by the Iowa Department of Natural Resources. The task of conducting this evaluation and modeling was assigned to the Iowa Geological and Water Survey (IGWS). The first aquifer to be studied was the Lower Dakota aquifer in a sixteen county area of northwest Iowa.
Resumo:
Among the toxic elements, Cd has received considerable attention in view of its association with a number of human health problems. The objectives of this study were to evaluate the Cd availability and accumulation in soil, transfer rate and toxicity in lettuce and rice plants grown in a Cd-contaminated Typic Hapludox. Two simultaneous greenhouse experiments with lettuce and rice test plants were conducted in a randomized complete block design with four replications. The treatments consisted of four Cd rates (CdCl2), 0.0; 1.3; 3.0 and 6.0 mg kg-1, based on the guidelines recommended by the Environmental Agency of the State of São Paulo, Brazil (Cetesb). Higher Cd rates increased extractable Cd (using Mehlich-3, Mehlich-1 and DTPA chemical extractants) and decreased lettuce and rice dry matter yields. However, no visual toxicity symptoms were observed in plants. Mehlich-1, Mehlich-3 and DTPA extractants were effective in predicting soil Cd availability as well as the Cd concentration and accumulation in plant parts. Cadmium concentration in rice remained below the threshold for human consumption established by Brazilian legislation. On the other hand, lettuce Cd concentration in edible parts exceeded the acceptable limit.
Resumo:
Synthetic root exudates were formulated based on the organic acid composition of root exudates derived from the rhizosphere of aseptically grown corn plants, pH of the rhizosphere, and the background chemical matrices of the soil solutions. The synthetic root exudates, which mimic the chemical conditions of the rhizosphere environment where soil-borne metals are dissolved and absorbed by plants, were used to extract metals from sewage-sludge treated soils 16 successive times. The concentrations of Zn, Cd, Ni, Cr, and Cu of the sludge-treated soil were 71.74, 0.21, 15.90, 58.12, and 37.44 mg kg-1, respectively. The composition of synthetic root exudates consisted of acetic, butyric, glutaric, lactic, maleic, propionic, pyruvic, succinic, tartaric, and valeric acids. The organic acid mixtures had concentrations of 0.05 and 0.1 mol L-1 -COOH. The trace elements removed by successive extractions may be considered representative for the availability of these metals to plants in these soils. The chemical speciation of the metals in the liquid phase was calculated; results showed that metals in sludge-treated soils were dissolved and formed soluble complexes with the different organic acid-based root exudates. The most reactive organic acid ligands were lactate, maleate, tartarate, and acetate. The inorganic ligands of chloride and sulfate played insignificant roles in metal dissolution. Except for Cd, free ions did not represent an important chemical species of the metals in the soil rhizosphere. As different metals formed soluble complexes with different ligands in the rhizosphere, no extractor, based on a single reagent would be able to recover all of the potentially plant-available metals from soils; the root exudate-derived organic acid mixtures tested in this study may be better suited to recover potentially plant-available metals from soils than the conventional extractors.
Resumo:
In recent years, physic nut (Jatropha curcas L.) has attracted attention because of its potential for biofuel production. Although it is adapted to low-fertility soils, physic nut requires soil acidity corrections and addition of a considerable amount of fertilizer for high productivity. The objective of this research was to evaluate the effectiveness of arbuscular mycorrhizal fungi (AMF) (control without AMF inoculation, Gigaspora margarita inoculation or Glomus clarum inoculation) on increasing growth and yield of physic nut seedlings under different rates of P fertilization (0, 25, 50, 100, 200, and 400 mg kg-1 P soil) in greenhouse. The experiment was arranged in a completely randomized, block in a factorial scheme design with four replications. The physic nut plants were harvested 180 days after the beginning of the experiment. Mycorrhizal inoculation increased physic nut growth, plant P concentration and root P uptake efficiency at low soil P concentrations. The P use quotient of the plants decreased as the amount of P applied increased, and the P use efficiency index increased at low P levels and decreased at high P levels. Mycorrhizal root colonization and AMF sporulation were negatively affected by P addition. The highest mycorrhizal efficiency was observed when the soil contained between 7.8 and 25 mgkg-1 of P. The physic nut plants responded strongly to P application, independent of mycorrhizal inoculation.
Resumo:
High rates of phosphate fertilizers are applied to potato (Solanum tuberosum L.), which may cause antagonistic interactions with other nutrients and limit crop yields when over-supplied. The purpose of this study was to evaluate the influence of phosphorus (P) levels in nutrient solution on P use efficiency, nutritional status and dry matter (DM) accumulation and partitioning of potato plants cv. Ágata. The experiment was carried out in a greenhouse, arranged in a completely randomized block design with four replications. Treatments consisted of seven P levels in nutrient solution (0, 2, 4, 8, 16, 31, and 48 mg L-1). Plants were harvested after 28 days of growth in nutrient solution, and separated in roots, stems and leaves for evaluations. The treatment effects were analyzed by regression analysis. Phosphorus levels of up to 8 mg L-1 increased the root and shoot DM accumulation, but drastically decreased the root/shoot ratio of potato cv. Ágata. Higher P availability increased P concentration, accumulation and absorption efficiency, but decreased P use efficiency. Higher P levels increased the N, P, Mg, Fe, and Mn concentrations in roots considerably and decreased K, S, Cu, and Zn concentrations. In shoot biomass, N, P, K, and Ca concentrations were significantly increased by P applied in solution, unlike Mg and Cu concentrations. Although higher P levels (> 8 mg L-1) in nutrient solution increased P concentration, accumulation and absorption efficiency, the DM accumulation and partitioning of potato cv. Ágata were not affected.
Resumo:
Hypomagnesemia and hypophosphatemia are frequent after severe burns; however, increased urinary excretion does not sufficiently explain the magnitude of the mineral depletion. We measured the mineral content of cutaneous exudates during the first week after injury. Sixteen patients aged 34 +/- 9 y (mean +/- SD) with thermal burns were studied prospectively and divided in 3 groups according to the extent of their burn injury and the presence or absence of mineral supplements: group 1 (n = 5), burns covering 26 +/- 5% of body surface; group 2 (n = 6), burns covering 41 +/- 10%; and group 3 (n = 5), burns covering 42 +/- 6% with prescription of magnesium and phosphate supplements. Cutaneous exudates were extracted from the textiles (surgical drapes, dressings, sheets, etc) surrounding the patients from day 1 to day 7 after injury. Mean magnesium serum concentrations decreased below reference ranges in 12 patients between days 1 and 4 and normalized thereafter. Phosphate, normal on day 0, was low during the first week. Albumin concentrations, normal on day 0, decreased and remained low. Urinary magnesium and phosphate excretion were within reference ranges and not larger in group 3. Mean daily cutaneous losses were 16 mmol Mg/d and 11 mmol P/d (largest in group 2). Exudative magnesium losses were correlated with burn severity (r = 0.709, P = 0.003). Cutaneous magnesium losses were nearly four times larger than urinary losses whereas cutaneous phosphate losses were smaller than urinary phosphate losses. Mean daily losses of both magnesium and phosphate were more than the recommended dietary allowances. Exudative losses combined with urinary losses largely explained the increased mineral requirements after burn injury.
Resumo:
Despite the large number of studies addressing the quantification of phosphorus (P) availability by different extraction methods, many questions remain unanswered. The aim of this paper was to compare the effectiveness of the extractors Mehlich-1, Anionic Resin (AR) and Mixed Resin (MR), to determine the availability of P under different experimental conditions. The laboratory study was arranged in randomized blocks in a [(3 x 3 x 2) + 3] x 4 factorial design, with four replications, testing the response of three soils with different texture: a very clayey Red Latosol (LV), a sandy clay loam Red Yellow Latosol (LVA), and a sandy loam Yellow Latosol (LA), to three sources (triple superphosphate, reactive phosphate rock from Gafsa-Tunisia; and natural phosphate from Araxá-Minas Gerais) at two P rates (75 and 150 mg dm-3), plus three control treatments (each soil without P application) after four contact periods (15, 30, 60, and 120 days) of the P sources with soil. The soil acidity of LV and LVA was adjusted by raising base saturation to 60 % with the application of CaCO3 and MgCO3 at a 4:1 molar ratio (LA required no correction). These samples were maintained at field moisture capacity for 30 days. After the contact periods, the samples were collected to quantify the available P concentrations by the three extractants. In general, all three indicated that the available P-content in soils was reduced after longer contact periods with the P sources. Of the three sources, this reduction was most pronounced for triple superphosphate, intermediate for reactive phosphate, while Araxá phosphate was least sensitive to the effect of time. It was observed that AR extracted lower P levels from all three soils when the sources were phosphate rocks, while MR extracted values close to Mehlich-1 in LV (clay) and LVA (medium texture) for reactive phosphate. For Araxá phosphate, much higher P values were determined by Mehlich-1 than by the resins, because of the acidity of the extractor. For triple superphosphate, both resins extracted higher P levels than Mehlich-1, due to the consumption of this extractor, particularly when used for LV and LVA.
Resumo:
Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs) for soils of the State of Santa Catarina (SC) in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa), permanent wilting point (PWP, 1,500 kPa), available water content (AW, by difference), saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes), organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.
Resumo:
The fou8 loss of function allele of adenosine bisphosphate phosphatase FIERY1 results in numerous phenotypes including the increased enzymatic oxygenation of fatty acids and increased jasmonate synthesis. Here we show that the mutation causes also profound alterations of sulfur metabolism. The fou8 mutants possess lower levels of sulfated secondary compounds, glucosinolates, and accumulate the desulfo-precursors similar to previously described mutants in adenosine 5'phosphosulfate kinase. Transcript levels of genes involved in sulfate assimilation differ in fou8 compared to wild type Col-0 plants and are similar to plants subjected to sulfate deficiency. Indeed, independent microarray analyses of various alleles of mutants in FIERY1 showed similar patterns of gene expression as in sulfate deficient plants. This was not caused by alterations in signalling, as the fou8 mutants contained significantly lower levels of sulfate and glutathione and, consequently, of total elemental sulfur. Analysis of mutants with altered levels of sulfate and glutathione confirmed the correlation of sulfate deficiency-like gene expression pattern with low internal sulfate but not low glutathione. The changes in sulfur metabolism in fou8 correlated with massive increases in 3'-phosphoadenosine 5'-phosphate levels. The analysis of fou8 thus revealed that sulfate starvation response is triggered by a decrease in internal sulfate as opposed to external sulfate availability and that the presence of desulfo-glucosinolates does not induce the glucosinolate synthesis network. However, as well as resolving these important questions on the regulation of sulfate assimilation in plants, fou8 has also opened an array of new questions on the links between jasmonate synthesis and sulfur metabolism.
Resumo:
Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si) fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L) were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si), three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay), with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI) of sugarcane increased over time, and was highest in RA.