899 resultados para peptide binding
Resumo:
HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the -helical homodimeric secretory cytokine interferon- (IFN-). We screened solid-phase peptide libraries from human and mouse IFN- to identify DnaK-binding sites. Conserved DnaK-binding sites were identified in the N-terminal half of helix B and in the C-terminal half of helix C, both of which are located at the IFN- dimer interface. Soluble peptides derived from helices B and C bound DnaK with high affinity in competition assays. No DnaK-binding sites were found in the loops connecting the -helices. The helix C DnaK-binding site appears to be conserved in most members of the superfamily of interleukin (IL)-10-related cytokines that comprises, apart from IL-10 and IFN-, a series of recently discovered small secretory proteins, including IL-19, IL-20, IL-22/IL-TIF, IL-24/MDA-7 (melanoma differentiation-associated gene), IL-26/AK155, and a number of viral IL-10 homologs. These cytokines belong to a relatively small group of homodimeric proteins with highly interdigitated interfaces that exhibit the strongly hydrophobic character of the interior core of a single-chain folded domain. We propose that binding of DnaK to helix C in the superfamily of IL-10-related cytokines may constitute the hallmark of a novel conserved regulatory mechanism in which HSP70-like chaperones assist in the formation of a hydrophobic dimeric "folding" interface.
Resumo:
The hormone glucagonlike peptide-1(736)amide (GLP-1) is released in response to ingested nutrients and acts to promote glucosedependent insulin secretion ensuring efficient postprandial glucose homeostasis. Unfortunately, the beneficial actions of GLP-1 which give this hormone many of the desirable properties of an antidiabetic drug are short lived due to degradation by dipeptidylpeptidase IV (DPP IV) and rapid clearance by renal filtration. In this study we have attempted to extend GLP-1 action through the attachment of palmitoyl moieties to the epsilon-amino group in the side chain of the Lys(26) residue and to combine this modification with substitutions of the Ala(8) residue, namely Val or aminobutyric acid (Abu). In contrast to native GLP-1, which was rapidly degraded, [Lys(pal)(26)]GLP-1, [Abu(8),Lys(pal)(26)]GLP-1 and [Val(8),Lys(pal)(26)]GLP-1 all exhibited profound stability during 12 h incubations with DPP IV and human plasma. Receptor binding affinity and the ability to increase cyclic AMP in the clonal beta-cell line BRIN-BD11 were decreased by 86- to 167-fold and 15- to 62-fold, respectively compared with native GLP-1. However, insulin secretory potency tested using BRIN-BD11 cells was similar, or in the case of [Val(8),Lys(pal)(26)]GLP-1 enhanced. Furthermore, when administered in vivo together with glucose to diabetic (ob/ob) mice, [Lys(pal)(26)]GLP-1, [Abu(8),Lys(pal)(26)]GLP-1 and [Val8,Lys(pal)26]GLP-1 did not demonstrate acute glucoselowering or insulinotropic activity as observed with native GLP-1. These studies support the potential usefulness of fatty acid linked analogues of GLP-1 but indicate the importance of chain length for peptide kinetics and bioavailability.
Resumo:
CCK receptors represent potential targets in a number of diseases. Knowledge of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for their ligand recognition, partial agonism, ligand-induced trafficking of signalling. In the current paper, we report studies from our laboratory and others which have provided new data on the molecularbasis of the pharmacology and functioning of CCK1 and CCK2 receptors. It has been shown that: 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs in agreement with distinct phannacophores of CCK toward the two receptors and receptor sequence variations; 2) Binding sites of most of non-peptide agonists/ antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK; Aromatic amino acids within and near the binding site, especially in helix VI, are involved in receptor activation; 4) Like for other members of family A of G-protein coupled receptors, residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have analyzed the adhesion of human and murine platelets, and of recombinant human and murine GpVI ectodomains, to synthetic triple-helical collagen-like peptides. These included 57 peptides derived from the sequence of human type III collagen and 9 peptides derived from the cyanogen bromide fragment of bovine type III collagen, alpha 1(III)CB4. We have identified several peptides that interact with GpVI, in particular a peptide designated III-30 with the sequence GAOGLRGGAGPOG-PEGGKGAAGPOGPO. Both human and murine platelets bound to peptide III-30 in a GpVI-dependent manner. III-30 also supported binding of recombinant GpVI ectodomains. Cross-linked III-30 induced aggregation of human and murine platelets, although with a lower potency than collagen-related peptide. Modifications of the peptide sequence indicated that the hydroxyproline residues play a significant role in supporting its GpVI reactivity. However, many peptides containing OGP/ GPO motifs did not support adhesion to GpVI. These data indicate that the ability of a triple-helical peptide to bind GpVI is not solely determined by the presence or spatial arrangement of these OGP/GPO motifs within the peptides.
Resumo:
Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. we have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III. Integrin alpha 2 beta 1 binds to several GXX'GER motifs within the collagens, the affinities of which differ sufficiently to control cell adhesion and migration independently of the cellular regulation of the integrin. The platelet receptor, Gp (glycoprotein) VI binds well to GPO (where 0 is hydroxyproline)-containing model peptides, but to very few Toolkit peptides, suggesting that sequence in addition to GPO triplets is important in defining GpVI binding. The Toolkits have been applied to the plasma protein vWF (von Willebrand factor), which binds to only a single sequence, identified by truncation and amino acid substitution within Toolkit peptides, as GXRGQOGVMGFO in collagens II and III. Intriguingly, the receptor tyrosine kinase, DDR2 (discoidin domain receptor 2) recognizes three sites in collagen II, including its vWF-binding site, although the amino acids that support the interaction differ slightly within this motif. Furthermore, the secreted protein BM-40 (basement membrane protein 40) also binds well to this same region. Thus the availability of extracellular collagen-binding proteins may be important in regulating and facilitating direct collagen-receptor interaction.
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen that displays a remarkably high resistance to antimicrobial peptides. We hypothesize that high resistance to antimicrobial peptides in these bacteria is because of the barrier properties of the outer membrane. Here we report the identification of genes for the biosynthesis of the core oligosaccharide (OS) moiety of the B. cenocepacia lipopolysaccharide. We constructed a panel of isogenic mutants with truncated core OS that facilitated functional gene assignments and the elucidation of the core OS structure in the prototypic strain K56-2. The core OS structure consists of three heptoses in the inner core region, 3-deoxy-d-manno-octulosonic acid, d-glycero-d-talo-octulosonic acid, and 4-amino-4-deoxy-l-arabinose linked to d-glycero-d-talo-octulosonic acid. Also, glucose is linked to heptose I, whereas heptose II carries a second glucose and a terminal heptose, which is the site of attachment of the O antigen. We established that the level of core truncation in the mutants was proportional to their increased in vitro sensitivity to polymyxin B (PmB). Binding assays using fluorescent 5-dimethylaminonaphthalene-1-sulfonyl-labeled PmB demonstrated a correlation between sensitivity and increased binding of PmB to intact cells. Also, the mutant producing a heptoseless core OS did not survive in macrophages as compared with the parental K56-2 strain. Together, our results demonstrate that a complete core OS is required for full PmB resistance in B. cenocepacia and that resistance is due, at least in part, to the ability of B. cenocepacia to prevent binding of the peptide to the bacterial cell envelope.
Resumo:
The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.
Resumo:
Aims: The objectives of this study were to produce Salmonella-specific peptide ligands by phage display biopanning and evaluate their use for magnetic separation (MS).
Methods and Results: Four phage display biopanning rounds were performed and the peptides expressed by the two most Salmonella-specific (on the basis of phage binding ELISA results) phage clones, MSal020401 and MSal020417, were chemically synthesized and coupled to MyOne™ tosylactivated Dynabeads®. Peptide capture capability for whole Salmonella cells from non-enriched broth cultures was quantified by MS + plate counts and MS + Greenlight™ detection, and compared to capture capability of anti-Salmonella (antibody-coated) Dynabeads®. MS + Greenlight™ gave a more comprehensive picture of capture capability than MS + plate counts and showed that Peptide MSal020417-coated beads exhibited at least similar, if not better, capture capability to anti-Salmonella Dynabeads® (mean capture values of 36.0 ± 18.2 % and 31.2 ± 20.1 %, respectively, over Salmonella spp. concentration range 3 x 101 - 3 x 106 cfu ml-1) with minimal cross-reactivity (= 1.9 %) to three other foodborne bacteria.
Conclusions: One of the phage display-derived peptide ligands was demonstrated by MS + Greenlight™ to be a viable antibody-alternative for MS of Salmonella spp.
Significance and Impact of Study: This study demonstrates an antibody-free approach to Salmonella detection and opens substantial possibilities for more rapid tests for this bacterium.
Resumo:
FK506 binding protein-like (FKBPL) and its peptide derivatives exert potent anti-angiogenic activity and and control tumour growth in xenograft models, when administered exogenously. However, the role of endogenous FKBPL in angiogenesis is not well characterised. Here we investigated the molecular effects of the endogenous protein and its peptide derivative, AD-01, leading to their anti-migratory activity. Inhibition of secreted FKBPL using a blocking antibody or siRNA-mediated knockdown of FKBPL accelerated the migration of human microvascular endothelial cells (HMEC-1). Furthermore, MDA-MB-231 tumour cells stably overexpressing FKBPL inhibited tumour vascular development suggesting that FKBPL secreted from tumour cells could inhibit angiogenesis. Whilst FKBPL and AD-01 target CD44, the nature of this interaction is not known and here we have further interrogated this aspect. We have demonstrated that FKBPL and AD-01 bind to the CD44 receptor and inhibit tumour cell migration in a CD44 dependant manner; CD44 knockdown abrogated AD-01 binding as well as its anti-migratory activity. Interestingly, FKBPL overexpression and knockdown or treatment with AD-01, regulated CD44 expression, suggesting a co-regulatory pathway for these two proteins. Downstream of CD44, alterations in the actin cytoskeleton, indicated by intense cortical actin staining and a lack of cell spreading and communication were observed following treatment with AD-01, explaining the anti-migratory phenotype. Concomitantly, AD-01 inhibited Rac-1 activity, up-regulated RhoA and the actin binding proteins, profilin and vinculin. Thus the anti-angiogenic protein, FKBPL, and AD-01, offer a promising and alternative approach for targeting both CD44 positive tumours and vasculature networks.
Resumo:
We identified nine small-molecule hit compounds of Heat shock 70 kDa protein 5 (HSPA5) from cascade in silico screening based on the binding modes of the tetrapeptides derived from the peptide substrate or inhibitors of Escherichia coli HSP70. Two compounds exhibit promising inhibition activities from cancer cell viability and tumor inhibition assays. The binding modes of the hit compounds provide a platform for development of selective small molecule inhibitors of HSPA5. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Adrenomedullin (AM) is an important regulatory peptide involved in both physiological and pathological states. We have previously demonstrated the existence of a specific AM-binding protein (AMBP-1) in human plasma. In the present study, we developed a nonradioactive ligand blotting assay, which, together with high pressure liquid chromatography/SDS-polyacrylamide gel electrophoresis purification techniques, allowed us to isolate AMBP-1 to homogeneity. The purified protein was identified as human complement factor H. We show that AM/factor H interaction interferes with the established methodology for quantification of circulating AM. Our data suggest that this routine procedure does not take into account the AM bound to its binding protein. In addition, we show that factor H affects AM in vitro functions. It enhances AM-mediated induction of cAMP in fibroblasts, augments the AM-mediated growth of a cancer cell line, and suppresses the bactericidal capability of AM on Escherichia coli. Reciprocally, AM influences the complement regulatory function of factor H by enhancing the cleavage of C3b via factor I. In summary, we report on a potentially new regulatory mechanism of AM biology, the influence of factor H on radioimmunoassay quantification of AM, and the possible involvement of AM as a regulator of the complement cascade.
Resumo:
The outer membrane (OM) of the intracellular parasite Brucella abortus is permeable to hydrophobic probes and resistant to destabilization by polycationic peptides and EDTA. The significance of these unusual properties was investigated in a comparative study with the opportunistic pathogens of the genus Ochrobactrum, the closest known Brucella relative. Ochrobactrum spp. OMs were impermeable to hydrophobic probes and sensitive to polymyxin B but resistant to EDTA. These properties were traced to lipopolysaccharide (LPS) because (i) insertion of B. abortus LPS, but not of Escherichia coli LPS, into Ochrobactrum OM increased its permeability; (ii) permeability and polymyxin B binding measured with LPS aggregates paralleled the results with live bacteria; and (iii) the predicted intermediate results were obtained with B. abortus-Ochrobactrum anthropi and E. coli-O. anthropi LPS hybrid aggregates. Although Ochrobactrum was sensitive to polymyxin, self-promoted uptake and bacterial lysis occurred without OM morphological changes, suggesting an unusual OM structural rigidity. Ochrobactrum and B. abortus LPSs showed no differences in phosphate, qualitative fatty acid composition, or acyl chain fluidity. However, Ochrobactrum LPS, but not B. abortus LPS, contained galacturonic acid. B. abortus and Ochrobactrum smooth LPS aggregates had similar size and zeta potential (-12 to -15 mV). Upon saturation with polymyxin, zeta potential became positive (1 mV) for Ochrobactrum smooth LPS while remaining negative (-5 mV) for B. abortus smooth LPS, suggesting hindered access to inner targets. These results show that although Ochrobactrum and Brucella share a basic OM pattern, subtle modifications in LPS core cause markedly different OM properties, possibly reflecting the adaptive evolution of B. abortus to pathogenicity.
Resumo:
Mammalian group-II phospholipases A2 (PLA2) of inflammatory fluids display bactericidal properties, which are dependent on their enzymatic activity. This study shows that myotoxins II (Lys49) and III (Asp49), two group-II PLA2 isoforms from the venom of Bothrops asper, are lethal to a broad spectrum of bacteria. Since the catalytically inactive Lys49 myotoxin II isoform has similar bactericidal effects to its catalytically active Asp49 counterpart, a bactericidal mechanism that is independent of an intrinsic PLA2 activity is demonstrated. Moreover, a synthetic 13-residue peptide of myotoxin II, comprising residues 115-129 (common numbering system) near the C-terminal loop, reproduced the bactericidal effect of the intact protein. Following exposure to the peptide or the protein, accelerated uptake of the hydrophobic probe N-phenyl-N-naphthylamine was observed in susceptible but not in resistant bacteria, indicating that the lethal effect was initiated on the bacterial membrane. The outer membrane, isolated lipopolysaccharide (LPS), and lipid A of susceptible bacteria showed higher binding to the myotoxin II-(115-129)-peptide than the corresponding moieties of resistant strains. Bacterial LPS chimeras indicated that LPS is a relevant target for myotoxin II-(115-129)-peptide. When heterologous LPS of the resistant strain was present in the context of susceptible bacteria, the chimera became resistant, and vice versa. Myotoxin II represents a group-II PLA2 with a direct bactericidal effect that is independent of an intrinsic enzymatic activity, but adscribed to the presence of a short cluster of basic/hydrophobic amino acids near its C-terminal loop.
Resumo:
Background: The oral cavity is an ideal environment for colonisation by micro-organisms. A first line of defence against microbial infection is the secretion of broad spectrum host defence peptides (HDPs). In the current climate of antibiotic resistance, exploiting naturally occurring HDPs or synthetic derivatives (mimetics) to combat infection is particularly appealing. The human cathelicidin, LL-37 is one such HDP expressed ubiquitously by epithelial cells and neutrophils. LL-37 exhibits the ability to bind lipopolysaccharide (LPS) and displays broad spectrum activity against a wide range of bacteria. The current study focuses on truncation of LL-37 and defining the antimicrobial and LPS binding activity of the resultant mimetics. Objectives: To assess the antimicrobial and LPS binding activity of LL-37 and three truncated mimetics (KE-18, EF-14 and KR-12). Methods: Peptides were synthesised in-house by Fmoc solid phase peptide synthesis or obtained commercially. Antimicrobial activity was determined using a radial diffusion assay and ability to bind LPS was determined by indirect ELISA. Results: LL-37 and mimetics displayed antimicrobial activity against Streptococcus mutans and Enterococcus Faecalis. KE-18 and KR-12 were shown to possess antimicrobial activity against both pathogens whereas EF-14 was the least antimicrobial. In terms of LPS binding, KE-18 and KR-12 were both effective whereas EF-14 showed the least activity of the three mimetics. Conclusion: Truncation of LL-37 can yield peptides which retain antimicrobial activities and have the ability to bind LPS. Interestingly in some cases the truncation of LL-37 produced mimetics with greater potency than the parent molecule in terms of antimicrobial activity and LPS binding. This work was funded by DEL and the Diabetes Wellness Foundation.
Resumo:
Whole animal studies have indicated that Ca2+ uptake by the gastrointestinal tract is regulated by the action of parathyroid hormone-related peptide (PTHrP) in teleost fish. We have characterised PTH receptors (PTHR) in piscine enterocytes and established, by using aminoterminal PTHrP peptides, the amino acid residues important for receptor activation and for stabilising the ligand/receptor complex. Ligand binding of 125I-(1–35tyr) PTHrP to the membrane fraction of isolated sea bream enterocytes revealed the existence of a single saturable high-affinity receptor (KD=2.59 nM; Bmax=71 fmol/mg protein). Reverse transcription/polymerase chain reaction with specific primers for sea bream PTH1R and PTH3R confirmed the mRNA expression of only the later receptor. Fugu (1–34) PTHrP increased cAMP levels in enterocytes but had no effect on total inositol phosphate accumulation. The aminoterminal peptides (2–34)PTHrP, (3–34)PTHrP and (7–34) PTHrP bound efficiently to the receptor but were severely defective in stimulating cAMP in enterocyte cells indicating that the first six residues of piscine (1–34)PTHrP, although not important for receptor binding, are essential for activation of the adenylate cyclase/phosphokinase A (AC-PKA)-receptor-coupled intracellular signalling pathway. Therefore, PTHrP in teleosts acts on the gastrointestinal tract through PTH3R and the AC-PKA intracellular signalling pathway and might regulate Ca2+ uptake at this site. Ligand-receptor binding and activity throughout the vertebrates appears to be allocated to the same amino acid residues of the amino-terminal domain of the PTHrP molecule.