933 resultados para parametric statistics
Resumo:
The application of large-eddy simulation (LES) to turbulent transport processes requires accurate prediction of the Lagrangian statistics of flow fields. However, in most existing SGS models, no explicit consideration is given to Lagrangian statistics. In this paper, we focus on the effects of SGS modeling on Lagrangian statistics in LES ranging from statistics determining single-particle dispersion to those of pair dispersion and multiparticle dispersion. Lagrangian statistics in homogeneous isotropic turbulence are extracted from direct numerical simulation (DNS) and the LES with a spectral eddy-viscosity model. For the case of longtime single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the time scale of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity fluctuation. These two effects tend to cancel one another leading to an accurate prediction of the longtime turbulent dispersion coefficient. Unlike the single-particle dispersion, LES tends to underestimate significantly the rate of relative dispersion of particle pairs and multiple-particles, when initial separation distances are less than the minimum resolved scale due to the lack of subgrid fluctuations. The overprediction of LES on the time scale of the Lagrangian velocity correlation is further confirmed by a theoretical analysis using a turbulence closure theory.
Resumo:
The fit of fracture strength data of brittle materials (Si3N4, SiC, and ZnO) to the Weibull and normal distributions is compared in terms of the Akaike information criterion. For Si3N4, the Weibull distribution fits the data better than the normal distribution, but for ZnO the result is just the opposite. In the case of SiC, the difference is not large enough to make a clear distinction between the two distributions. There is not sufficient evidence to show that the Weibull distribution is always preferred to other distributions, and the uncritical use of the Weibull distribution for strength data is questioned.
Resumo:
The influence of threshold stress on the estimation of the Weibull statistics is discussed in terms of the Akaike information criterion. Numerical simulations show that, if sample data are limited in number and threshold stress is not too large, the two-parameter Weibull distribution is still a preferred choice. For example, the fit of strength data of glass and ceramics to the two- and three-parameter Weibull distributions is compared.