972 resultados para oxidation potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chalcopyrite oxidation was evaluated with two acidophilic thiobacilli that are important in bioleaching processes. Acidithiobacillus thiooxidans in pure culture did not oxidize CuFeS2 but oxidized externally added S in the presence of CuFeS2. Acidithiobacillus ferrooxidans released Cu2+ and soluble Fe from chalcopyrite, and the time course lead to a gradual passivation of chalcopyrite whereby Cu2+ dissolution leveled off. Fe3+ acted as a chemical oxidant in CuFeS2 leaching and was reduced to Fe2+. Parallel bacterial re-oxidation of Fe2+ contributed to a high Fe3+/Fe2+ ratio and an increase in redox potential. Chemical oxidation of chalcopyrite was slow compared with A. ferrooxidans-initiated solubilization. X-ray analysis revealed new solid phases: (i) jarosite, found in solids from A. ferrooxidans cultures and in chemical controls that initially received Fe2+ or Fe3+, and (ii) S-0, found mostly in iron-amended A. ferrooxidans culture and the corresponding chemical controls. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A research-grade mineral sample that contained marcasite and pyrite (FeS2) was subjected to the oxidation by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Oxidation of FeS2 by A. ferrooxidans produced acid, and the redox potential increased with sulfide dissolution and the oxidation of Fe2+. jarosite was detected in solids from spent cultures. Preferential oxidation of either mineral was not consistently observed across all treatments. Neither iron sulfide was oxidized by A. thiooxidans. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In potentiometric-flow systems, linear-potential responses for logarithmic concentrations can be attained for first-(or pseudo-first-) order reactions in which the monitored chemical species react with the analyte during a fixed time interval. To demonstrate this property, the determination of glycerol based on its oxidation by periodate and potentiometric monitoring of the remaining periodate was selected. Influence of reagent concentration and timing on the linearity of the analytical curve were investigated. A mathematical treatment was derived, and potentialities/limitations of the approach were outlined. The system was applied to analysis of soap and lixivia samples. The analytical curve within 200 and 2000 mg L-1 (r = 0.99975; n = 5) was described as E = 8.166 + 0.0478 (glycerol). The sample throughput was 100 h(-1), and a measurement repeatability within 0.5 mV was always observed. By applying a t-test, there was no statistical difference between the results obtained by the proposed procedure and by iodimetric titration at the 95% confidence level. (C) 2000 John Wiley & Sons, Inc. Lab Robotics and Automation 12:41-45, 2000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of photoelectrocatalytic oxidation to degrade the commercially important copper-plitalocyanine dye, remazol turquoise blue 15 (RTB) was investigated. The best experimental condition was optimized, evaluating the performance of Ti/TiO2 thin-film electrodes prepared by sol-gel method in the decolourization of 32 mg L-1 RTB dye in 0.5 mol L-1 Na2SO4 pH 8 and applied potential of +1.5 V versus SCE under UV irradiation. Spectrophotometric measurements, high performance liquid chromatography, dissolved organic carbon (TOC) evaluation and stripping analysis of yielding solution obtained after 3 h of photoelectrolysis leads to 100% of absorbance removal from wavelength of 250-800 nm, 79.6% of TOC reduction and the releasing of up to 54.6% dye-bound copper (0.85 mg L-1) into the solution. Both, original and oxidized dye solution did not presented mutagenic activity with the strains TA98 and WOO of Salmonella in the presence and absence of S9 mix at the tested doses. Nevertheless, the yielding photoelectrocatalytic oxidized solution showed an increase in the acute toxicity for Vibrio fischeri bacteria, explained by copper liberation during treatment. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PtRu/C nanocatalysts were prepared by a microemulsion method using different values of water/surfactant molar ratio in order to get different particle sizes. Crystallite sizes and structural properties were determined by X-ray diffraction. Particle size and distribution were characterized by transmission electron microscopy and average composition was determined by energy dispersive X-ray analysis. Differential scanning calorimetry measurements indicated the presence of oxides in the as-prepared catalysts. The general electrochemical behavior was evaluated by cyclic voltammetry in 0.5 M sulfuric acid and the electrocatalytic activity towards the oxidation of methanol was studied in 0.5 M methanol acid solutions by potential sweeps and chronoamperometry. copyright The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pt-Ru/C materials of this study were prepared by a microemulsion method with fixed water to surfactant molar ratio and heat treated at low temperatures, to avoid changes in the average particle size, in different atmospheres. All samples were characterized by X-ray diffraction (XRD) and the mean crystallite size was estimated by using Scherrer's equation. Catalysts morphology was characterized by transmission electron microscopy (TEM). Average composition was obtained by energydispersive X-ray analysis (EDX). The general electrochemical behavior was evaluated by cyclic voltammetry in 0.5 M sulfuric acid and the electrocatalytic activity towards the oxidation of methanol was studied in 0.5 M methanol acid solutions by potential sweeps and chronoamperometry. Oxidation of adsorbed CO was used to estimate the electrochemical active area and to infer the surface properties. ©The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the considerable progress in the understanding of the mechanistic aspects of the oscillatory electro-oxidation of C1 molecules, there are apparently no systematic studies concerning the impact of surface modifiers on the oscillation dynamics. Herein we communicate on the oscillatory electro-oxidation of formic acid on ordered Pt3Sn intermetallic phase, and compare the results with those obtained on a polycrystalline platinum electrode. Overall, the obtained results were very reproducible, robust and allowed a detailed analysis on the correlation between the catalytic activity and the oscillation dynamics. The presence of Sn in the intermetallic electrode promotes drastic effects on the oscillatory dynamics. The decrease in the mean electrode potential and in the oscillation frequency, as well as the pronounced increase in the number oscillations (and also in the oscillation time), was discussed in connection with the substantial catalytic enhancement of the Pt3Sn towards the electro-oxidation of formic acid. The self-organized potential oscillations were used to probe the electrocatalytic activity of the Pt3Sn electrode and compare it with that for polycrystalline Pt. The presence of Sn resulted in a significant decrease (2-11 times, depending on the applied current) of the rate of surface poisoning. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes the photoelectrochemical hydrogen generation during a photodegradation of an organic compound. For this, it was chosen the reactive black 5 dye as a model of organic pollutant and its oxidation under TiO2 nanotube in a two compartment cell. The photoelectrocatalysis is conducted in 0.1 mol L-1 Na2SO4 pH 6 medium under photoanode biased at +1.0 V (SCE) and activated by UV and visible light using 150W Xe-Arc lamp (Oriel) and 125 W Hg lamp (Osram). The concomitant hydrogen production was monitored at cathodic compartment using a Pt cathode. Using optimized condition of Na2SO4 0.1 mol L-1 pH 6 as supporting electrolyte, applied potential of +1.0V it was verified 100% of discoloration and 72% of TOC removal of 1.0 x 10(-5) mol L-1 Reactive Black 5 dye after 120 min of treatment (rate constant of 10.6 x10(-2) min(-1)). The concomitant hydrogen generation was 44% in this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(Photo)electrochemical experiments on pyrite electrodes in acetic acid-acetate buffer (pH = 4.5) are conducted to clarify the main oxidation reactions and the nature of the products. Electrochemical reactions in the -0.40 to 1.25 V (SHE) potential range are studied, and the production of iron (III) polysulfide from anodically formed iron oxides and polysulfides is discussed. Charges experimentally obtained are considered for the estimation of the most likely stoichiometry of the metallic polysulfide. The photoselectivity of the pyrite corrosion process indicates that the oxidation reactions of Fe2+ and S-2(2-) an not consecutive. The changes in stoichiometry and/or annihilation of crystalline structure defects are responsible for the observed photosensitivity of pyrite. A description of light effects on the interfacial behaviour and stability of pyrite is presented in terms of conduction and valence band energies, and thermodynamic potentials. (C) 2001 Elsevier Science B.V. All rights reserved.