1000 resultados para organosilicon films
Resumo:
Nickel rich NiTi films were sputter deposited on p-doped Si left angle bracket1 0 0right-pointing angle bracket substrates maintained at 300 °C. The films were subsequently solution treated at 700 °C for 30 min followed by ageing at 400 and 500 °C for 5 h. The microstructure of the films was examined by TEM and these studies revealed that the NiTi films were mostly amorphous in the as-deposited condition. The subsequent solution treatment and ageing resulted in crystallization of the films with the film aged at 400 °C exhibiting nanocrystalline grains and three phases viz. B2 (austenite), R and Ni3Ti2 whereas the film aged at 500 °C shows micron sized grains and two phases viz. R and Ni3Ti2. Nanoindentation studies revealed that the nature of the load versus indentation depth response for the films aged at 400 and 500 °C was different. For the same load, the indenter penetrated to a much greater depth for the film aged at 400 °C as compared to the film aged at 500 °C. Also the ratio of the residual indentation depth (hf) to maximum indentation depth (hmax) is lower for the film aged at 400 °C as compared to the film aged at 500 °C. This was attributed to the occurrence of stress induced martensitic transformation of the B2 phase present in the film aged at 400 °C during indentation loading which results in a transformation strain in addition to the normal elastic and plastic strains and its subsequent recovery on unloading. The hardness and elastic modulus measured using the Oliver and Pharr analysis was also found to be lower for the film aged at 400 °C as compared to the film aged at 500 °C which was also primarily attributed to the same effect.
Resumo:
Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.
Resumo:
WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.
Resumo:
Tin monosulfide (SnS) films with varying distance between the source and substrate (DSS) were prepared by the thermal evaporation technique at a temperature of 300 degrees C to investigate the effect of the DSS on the physical properties. The physical properties of the as-deposited films are strongly influenced by the variation of DSS. The thickness, Sn to S at.% ratio, grain size, and root mean square (rms) roughness of the films decreased with the increase of DSS. The films grown at DSS = 10 and 15 cm exhibited nearly single-crystalline nature with low electrical resistivity. From Hall-effect measurements, it is observed that the films grown at DSS <= 15 cm have p-type conduction and the films grown at higher distances have n-type conduction due to the variation of the Sn/S ratio. The films grown at DSS = 15 cm showed higher optical band gap of 1.36 eV as compared with the films grown at other distances. The effect of the DSS on the physical properties of SnS films is discussed and reported.
Resumo:
In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-andn nano-electro-mechanical systems (MEMS and NEMS) for biomedical,maerospace and oceanic applications.
Resumo:
The optical properties of Bi(2)V(1-x)MnxO(5.5-x) (x=0.05, 0.1, 0.15 and 0.2 at.%) thin films fabricated by pulsed laser deposition on platinized Silicon Substrates were Studied in UV-visible spectral region (1.51-4.17 CV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Psi and Delta) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn Content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fabrication of single-component multilayer thin films still remains a challenging task via the layer-by-layer (LbL) approach. In this communication, we report the self-assembly of single-component multilayer thin films on flat and colloidal substrates through glutaraldehyde mediated covalent bonding.
Resumo:
The ferroelectric Pb(Zr0.48Ti0.52)O-3 (PZT) thin films prepared by the pulsed laser deposition technique were studied for their response to high energy lithium ion irradiation through impedance spectroscopy. The Debye peaks, observed in the impedance and modulus plots of irradiatedfilms, shifts towards higher frequencies compared to those of unirradiated films. This is equivalent to the trend observed with increase in temperature in the unirradiated films due to the dielectric relaxation. The irradiated films showed a decrease in the grain resistance compared to the unirradiated films. The activation energy of dielectric relaxation increases from 1.25 eV of unirradiated film to 1.62 eV of irradiated film. The observed modifications in the irradiated film were ascribed to the modifications in the grain structure due to the high value of electronic energy loss.
Resumo:
Thin films of antimony-doped tin oxide (SnO2:Sb) were prepared by spray pyrolysis using stannous chloride (SnCl2) and antimony trichloride (SbCl3) as precursors. The antimony doping was varied from 0 to 4 wt%. Scanning electron microscopy (SEM) revealed the surface morphology to be very smooth, yet grainy in nature. X-ray diffraction (XRD) shows films to have preferred orientation, which varies with the extent of antimony doping: undoped films prefer the (2 1 1) orientation, while the (3 0 1) orientation is preferred for doping levels of 0.5 and 1.0 wt%. For higher doping levels, the (2 0 0) orientation is preferred. This difference in preferred orientations is reflected in the SEM of the films. Atomic force microscopy (AFM) reveals that film roughness is not affected by antimony doping. The minimum sheet resistance (2.17 ohm/square) achieved in the present study is lower than values reported to date in SnO2:Sb films prepared from SnCl2 precursor. The Hall mobility of undoped SnO2 films was found to be 109.52 cm(2)/V s, which reduces to 2.55 cm(2)/ Vs for the films doped with 4 wt% of Sb. On the other hand, the carrier concentration, which is 1.23 x 10(19) cm(-3) in undoped films, increases to 2.89 x 10(21) cm(-3) for the films doped with 4 wt% of Sb. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Films of CuInSe2 were deposited onto glass substrates by a hot wall deposition method using bulk CuInSe2 as a source material. All the deposited CuInSe2 films were found to be polycrystalline in nature exhibiting the chalcopyrite structure with the crystallite orientation along (101),(112),(103),(211),(220),(312) and (400) directions. The photocurrent was found to increase with increase in film thickness and also with increase of light intensity. Photocurrent spectra show a peak related to the band-to-band transition. The spectral response of CuInSe2 thin films was studied by allowing the radiation to pass through a series of interference filters in the wavelength range 700-1200 rim. Films of higher thickness exhibited higher photosensitivity while low thickness films exhibited moderate photosensitivity. CuInSe2-based Solar cells with different types of buffer layers such as US, Cdse, CuInSe2 and CdSe0.7Te0.3 were fabricated. The current and voltage were measured using an optical power meter and an electrometer respectively. The fabricated solar cells were illuminated using 100 mW/cm(2) white light under AM1 conditions. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area.
Resumo:
ZnO nanostructures were deposited on flexible polymer sheet and cotton fabrics at room temperature by activated reactive evaporation. Room-temperature photoluminescence spectrum of ZnO nanostructured film exhibited a week intrinsic UV emission and a strong broad yellow-orange visible emission. TEM and HRTEM studies show that the grown nanostructures are crystalline in nature and their growth direction was indentified to be along [002]. ZnO nanostructures grown on the copper-coated flexible polymer sheets exhibited stable field-emissio characteristics with a threshold voltage of 2.74 V/mu m (250 mu A) and a very large field enhancement factor (beta) of 23,213. Cotton fabric coated with ZnO nanostructures show an excellent antimicrobial activity against Staphylococcus aureus bacteria (Gram positive), and similar to 73% reduction in the bacterial population is achieved compared to uncoated fabrics after 4 h in viability. Using a shadow mask technique, we also selectively deposited the nanostructures at room temperature on polymer substrates.