973 resultados para organic solution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the photodegradation of 4-chlorophenol (4-CP) in aqueous solution by the photo-Fenton process using solar irradiation. The influence of solution path length, and Fe(NO3)(3) and H2O2 concentrations on the degradation of 4-CP is evaluated by response surface methodology. The degradation process was monitored by the removal of total organic carbon (TOC) and the release of chloride ion. The results showed a very important role of iron concentration either for TOC removal or dechlorination. on the other hand, a negative effect of increasing solution path length on mineralization was observed, which can be compensated by increasing the iron concentration. This permits an adjustment of the iron concentration according to the irradiation exposure area and path length (depth of a tank reactor). Under optimum conditions of 1.5 mM Fe(NO3)(3), 20.0 mM H2O2 and 4.5 cm solution path length, 17 min irradiation under solar light were sufficient to reduce a 72 mg C L-1 solution of 4-CP by 91 (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, electrochemical and photo-assisted electrochemical processes are used for color, total organic carbon (TOC) and chemical oxygen demand (COD) degradation of one of the most abundant and strongly colored industrial wastewaters, which results from the dyeing of fibers and fabrics in the textile industry. The experiments were carried out in an 18L pilot-scale tubular low reactor with 70% TiO2/30% RuO2 DSA. A synthetic acid blue 40 solution and real dye house wastewater, containing the same dye, were used for the experiments. By using current density of 80 mA cm(-2) electrochemical process has the capability to remove 80% of color, 46% of TOC and 69% of COD. When used the photochemical process with 4.6 mW cm(-2) of 254nm UV-C radiation to assist the electrolysis, has been obtained 90% of color, 64% of TOC and 60% of COD removal in 90 minutes of processing; furthermore, 70% of initial color was degraded within the first 15 minutes. Experimental runs using dye house wastewater resulted in 78% of color, 26% of TOC and 49% of COD in electrolysis at 80 mA cm(-2) and 90 min; additionally, when photo-assisted, electrolysis resulted in removals of 85% of color, 42% of TOC and 58% of COD. For the operational conditions used in this study, color, TOC and COD showed pseudo-first-order decaying profiles. Apparent rate constants for degradation of TOC and COD were improved by one order of magnitude when the photo-electrochemical process was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the influence of two different iron sources, Fe(NO3)(3) and complexed ferrioxalate (FeOx), on the degradation efficiency of 4-chlorophenol (4CP), malachite green, formaldehyde, dichloroacetic acid (DCA) and the commercial products of the herbicides diuron and tebuthiuron was studied. The oxidation of 4CP, DCA, diuron and tebuthiuron shows a strong dependence on the iron source. While the 4CP degradation is favored by the use of Fe(NO3)(3), the degradation of DCA and the herbicides diuron and tebuthiuron is most efficient when ferrioxalate is used. on the other hand, the degradation of malachite green and formaldehyde is not very influenced by the iron source showing only a slight improvement when ferrioxalate is used. In the case of formaldehyde, DCA, diuron and tebuthiuron, despite of the additional carbon introduced by the use of ferrioxalate, higher mineralization percentages were observed, confirming the beneficial effect of ferrioxalate on the degradation of these compounds. The degradation of tebuthiuron was studied in detail using a shallow pond type solar flow reactor of 4.5 L capacity and 4.5 cm solution depth. Solar irradiation of tebuthiuron at a flow rate of 9 L h(-1), in the presence of 10.0 mmol L-1 H2O2 and 1.0 mmol L-1 ferrioxalate resulted in complete conversion of this herbicide and 70% total organic carbon removal. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of OH- with Fe(TPP)(+), Fe(TDCPP)(+), Fe(TMP)(+) and Fe(TFPP)(+) in 1,2-dichloroethane was studied by titrating FeP solutions with aliquots of a solution of tetrabutylammonium hydroxide in acetonitrile. The number of OH- ions (n) coordinated to the FeP and the stability constants (beta(n)) for the FeP-OH- complexes were calculated from UV-Vis absorbance data and iron spin states were determined through EPR spectroscopy, Fe(TMP) (+) forms a high-spin mono-hydroxo complex, while Fe(TPP)I and Fe(TDCPP)(+) form high-spin bis-hydroxo complexes. To our knowledge, this is the first time that the formation of bis-hydroxo complexes from Fe(TPP) (+) has been reported, and this was possible because the studies were carried out in basic organic media, In this same medium, Fe-III-Fe-II reduction upon OH- addition to Fe(TFPP) (+) was observed, without concomitant formation of the mu-oxo dimeric species [Fe(TFPP)](2)O. (C) 1999 Elsevier B.V., All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study reports on an alternative methodology for the extraction of Humic Substances (HS) from the soil. The extractions were carried out with 0.5 M KOH for 3 h, at a ratio of 1:20 (m/v) under a nitrogen atmosphere. The HS were separated by centrifugation based on their solubility in alcaline solution. This methodology was compared with the usual procedure in three different soil samples and in one sample from vermicompost. The yield, E4/E6 ratio, ash content, and the elemental composition (C, H, O, N) of the extracted HS have been determined. The functional groups were identified by Fourier-transform infrared spectroscopy. This novel procedure adds a new perspective to the extraction of humic substances due to the short time and high performance of the extraction in relation to the usual procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tinplate is one of the most widely used food canning materials, however, there are significant problems related to the use of tinplate cans, such as alterations in sensory features affecting food quality and corrosion phenomena of the canning material. To avoid corrosion problems different methods have been used for the passivation of tinplate such protective lacquers or different kinds of corrosion inhibitors (chromate and dichromate). However, chromates and dichromates are extremely harmful to the environment and can cause carcinogenic tumors to humans. An option, protective coatings obtained by the sol-gel process, act as a physical barrier, which isolates the surface of metal protecting from the corrosive agents. The aim of this work is to study the influence of addition of cerium (IV) ions in the inorganic and organic part of sol-gel processing in the formation of hybrid coatings based on siloxane-PMMA on tin plate. The coatings were obtained by dip-coating technique and evaluated by open circuit and impedance measurements, linear polarization and polarization curves obtained in 3.5% NaCl solution. The results have clearly shown the improvement on the protective properties of the Ce 4+ modified film when added into the organic phase, which can be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. © 2009 by NACE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although many studies have shown that soil solution chemistry can be a reliable indicator of biogeochemical cycling in forest ecosystems, the effects of litter manipulations on the fluxes of dissolved elements in gravitational soil solutions have rarely been investigated. We estimated the fluxes of NH4-N, NO3-N, K, Ca, Mg, Na, Cl, dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) over the first two years after re-planting Eucalyptus trees in the coastal area of Congo. Two treatments were replicated in two blocks after clear-cutting 7-year-old stands: in treatment R, all the litter above the mineral soil was removed before planting, and in a double slash (DS) treatment, the amount of harvest residues was doubled. The soil solutions were sampled down to a depth of 4 m and the water fluxes were estimated using the Hydrus 1D model parameterized from soil moisture measurements in 4 plots. Isotopic and spectroscopic analytical techniques were used to assess the changes in dissolved organic matter (DOM) properties throughout the transfer in the soil. The first year after planting, the fluxes of NH4-N, K, Ca, Mg, Na, Cl and DOC in the topsoil of the DS treatment were 2-5 times higher than in R, which showed that litter was a major source of dissolved nutrients. Nutrient fluxes in gravitational solutions decreased sharply in the second year after planting, irrespective of the soil depth, as a result of intense nutrient uptake by Eucalyptus trees. Losses of dissolved nutrients were noticeably low in these Eucalyptus plantations despite a low cation exchange capacity, a coarse soil texture and large amounts of harvest residues left on-site at the clear cut in the DS treatment. All together, these results clarified the strong effect of litter manipulation observed on eucalypt growth in Congolese sandy soils. DOM fluxes, as well as changes in delta C-13, C:N and aromaticity of DOM throughout the soil profile showed that the organic compounds produced in the litter layer were mainly consumed by microorganisms or retained in the topsoil. Below a depth of 15 cm, most of the DOC and the DON originated from the first 2 cm of the soil and the exchanges between soil solutions and soil organic matter were low. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. This in vitro study aimed to analyze the effect of TiF4 compared to NaF varnishes and solutions, to protect against dentin erosion associated with abrasion. Materials and methods. Bovine dentin specimens were pre-treated with NaF-Duraphat (2.26% F), NaF/CaF2-Duofluorid (5.63% F), experimental-NaF (2.45% F), experimental-TiF4 (2.45% F) and placebo varnishes; NaF (2.26% F) and TiF4 (2.45% F) solutions. Controls remained untreated. The erosive pH cycling was performed using a soft drink (pH 2.6) 4 x 90 s/day and the toothbrushing-abrasion 2 x 10 s/day, in vitro for 5 days. Between the challenges, the specimens were exposed to artificial saliva. Dentin tissue loss was measured profilometrically (mu m). Results. ANOVA/Tukey's test showed that all fluoridated varnishes (Duraphat, 7.5 +/- 1.1; Duofluorid, 6.8 +/- 1.1; NaF, 7.2 +/- 1.9; TiF4, 6.5 +/- 1.0) were able to significantly reduce dentin tissue loss (40.7% reduction compared to control) when compared to placebo varnish (11.2 +/- 1.3), control (11.8 +/- 1.7) and fluoridated (NaF, 9.9 +/- 1.8; TiF4, 10.3 +/- 2.1) solutions (p < 0.0001), which in turn did not significantly differ from each other. Conclusion. All fluoridated varnishes, but not the solutions, had a similar performance and a good potential to reduce dentin tissue loss under mild erosive and abrasive conditions in vitro. Risk patients for erosion and abrasion, especially those with exposed dentin, should benefit from this clinical preventive measure. Further research has to confirm this promising result in the clinical situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mixed ruthenium(II) complexes trans-[RuCl(2)(PPh(3))(2)(bipy)] (1), trans-[RuCl(2)(PPh(3))(2)(Me(2)bipy)](2), cis-[RuCl(2)(dcype)(bipy)](3), cis-[RuCl(2)(dcype)(Me(2)bipy)](4) (PPh(3) = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2'-bipyridine, Me(2)bipy = 4,4'-dimethyl-2,2'-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(=C=CHPh)(PPh(3))(2)(bipy)]PF(6) (5), [RuCl(=C=CHPh)(PPh(3))(2)(Me(2)bipy)]PF(6) (6), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (7), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the pi-pi* excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH(2)Cl(2), CH(3)CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(-0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Transformed cells of Escherichia coli DH5-α with pGFPuv, induced by IPTG (isopropyl-β-d-thiogalactopyranoside), express the green fluorescent protein (gfpuv) during growth phases. E. coli subjected to the combination of selective permeation by freezing/thawing/sonication cycles followed by the three-phase partitioning extraction (TPP) method were compared to the direct application of TPP to the same culture of E. coli on releasing gfpuv from the over-expressing cells. Material and Methods Cultures (37°C/100 rpm/ 24 h; μ = 0.99 h-1 - 1.10 h-1) of transformed (pGFP) Escherichia coli DH5-α, expressing the green fluorescent protein (gfpuv, absorbance at 394 nm and emission at 509 nm) were sonicated in successive intervals of sonication (25 vibrations/pulse) to determine the maximum amount of gfpuv released from the cells. For selective permeation, the transformed previously frozen (-75°C) cells were subjected to three freeze/thaw (-20°C/ 0.83°C/min) cycles interlaid by sonication (3 pulses/ 6 seconds/ 25 vibrations). The intracellular permeate with gfpuv in extraction buffer (TE) solution (25 mM Tris-HCl, pH 8.0, 1 mM β-mercaptoethanol β-ME, 0.1 mM PMSF) was subjected to the three-phase partitioning (TPP) method with t-butanol and 1.6 M ammonium sulfate. Sonication efficiency was verified on the application to the cells previously treated by the TPP method. The intra-cell releases were mixed and eluted through methyl HIC column with a buffer solution (10 mM Tris-HCl, 10 mM EDTA, pH 8.0). Results The sonication maximum released amount obtained from the cells was 327.67 μg gfpuv/mL (20.73 μg gfpuv/mg total proteins – BSA), after 9 min of treatment. Through the selective permeation by three repeated freezing/thawing/sonication cycles applied to the cells, a close content of 241.19 μg gfpuv/mL (29.74 μg gfpuv/mg BSA) was obtained. The specific mass range of gfpuv released from the same cultures, by the three-phase partitioning (TPP) method, in relation to total proteins, was higher, between 107.28 μg/mg and 135.10 μg/mg. Conclusions The selective permeation of gfpuv by freezing/thawing/sonication followed by TPP separation method was equivalent to the amount of gfpuv extracted from the cells directly by TPP; although selective permeation extracts showed better elution through the HIC column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since conjugated polymers, i.e. polymers with spatially extended pi-bonding system have offered unique physical properties, unobtainable for conventional polymers, significant research efforts directed to better understanding of their chemistry, physics and engineering have been undertaken in the past two and half decades. In this thesis we discuss the synthesis, characterisation and investigation of conjugated semiconducting organic materials for electronic applications. Owing to the versatile properties of metal-organic hybrid materials, there is significant promise that these materials can find use in optical or electronic devices in the future. In addressing this issue, the synthesis of bisthiazol-2-yl-amine (BTA) based polymers is attempted and their metallation is investigated. The focus of this work has been to examine whether the introduction of coordinating metal ions onto the polymer backbone can enhance the conductivity of the material. These studies can provide a basis for understanding the photophysical properties of metal-organic polymers based on BTA. In their neutral (undoped) form conjugated polymers are semiconductors and can be used as active components of plastics electronics such as polymer light-emitting diodes, polymer lasers, photovoltaic cells, field-effect transistors, etc. Toward this goal, it is an objective of the study to synthesize and characterize new classes of luminescent polymeric materials based on anthracene and phenanthrene moieties. A series of materials based on polyphenylenes and poly(phenyleneethynylene)s with 9,10-anthrylene subunits are not only presented but the synthesis and characterization of step-ladder and ladder poly(p-phenylene-alt-anthrylene)s containing 9,10-anthrylene building groups within the main chain are also explored. In a separate work, a series of soluble poly-2,7- and 3,6-phenanthrylenes are synthesized. This can enable us to do a systematic investigation into the optical and electronic properties of PPP-like versus PPV-like. Besides, the self-organization of 3,6-linked macrocyclic triphenanthrylene has been investigated by 2D wide-angle X-ray scattering experiments performed on extruded filaments in solution and in the bulk. Additionally, from the concept that donor-acceptor materials can induce efficient electron transfer, the covalent incorporation of perylene tetracarboxydiimide (PDI) into one block of a poly(2,7-carbazole) (PCz)-based diblock copolymer and 2,5-pyrrole based on push-pull type material are achieved respectively.