989 resultados para optimal trigger speed
Resumo:
China is motorizing rapidly, with associated urban road development and extensive construction of motorways. Speeding accounts for about 10% of fatalities, which represents a large decrease from a peak of 17.2% in 2004. Speeding has been addressed at a national level through the introduction of laws and procedural requirements in 2004, in provinces either across all road types or on motorways, and at city level. Typically, documentation of speed enforcement programmes has taken place when new technology (i.e. speed cameras) is introduced, and it is likely that many programmes have not been documented or widely reported. In particular, the national legislation of 2004 and its implementation was associated with a large reduction in fatalities attributed to speeding. In Guangdong Province, after using speed detection equipment, motorway fatalities due to speeding in 2005 decreased by 32.5% comparing with 2004. In Beijing, the number of traffic monitoring units which were used to photograph illegal traffic activities such as traffic light violations, speeding and using bus lanes illegally increased to 1958 by April 1, 2009, and in the future such automated enforcement will become the main means of enforcement, expected to account for 60% of all traffic enforcement in Beijing. This paper provides a brief overview of the speeding enforcement programmes in China which have been documented and their successes.
Resumo:
In this paper, a new comprehensive planning methodology is proposed for implementing distribution network reinforcement. The load growth, voltage profile, distribution line loss, and reliability are considered in this procedure. A time-segmentation technique is employed to reduce the computational load. Options considered range from supporting the load growth using the traditional approach of upgrading the conventional equipment in the distribution network, through to the use of dispatchable distributed generators (DDG). The objective function is composed of the construction cost, loss cost and reliability cost. As constraints, the bus voltages and the feeder currents should be maintained within the standard level. The DDG output power should not be less than a ratio of its rated power because of efficiency. A hybrid optimization method, called modified discrete particle swarm optimization, is employed to solve this nonlinear and discrete optimization problem. A comparison is performed between the optimized solution based on planning of capacitors along with tap-changing transformer and line upgrading and when DDGs are included in the optimization.
Resumo:
Ocean gliders constitute an important advance in the highly demanding ocean monitoring scenario. Their effciency, endurance and increasing robustness make these vehicles an ideal observing platform for many long term oceanographic applications. However, they have proved to be also useful in the opportunis-tic short term characterization of dynamic structures. Among these, mesoscale eddies are of particular interest due to the relevance they have in many oceano-graphic processes.
Resumo:
The well-established under-frequency load shedding (UFLS) is deemed to be the last of effective remedial measures against a severe frequency decline of a power system. With the ever-increasing size of power systems and the extensive penetration of distributed generators (DGs) in power systems, the problem of developing an optimal UFLS strategy is facing some new challenges. Given this background, an optimal UFLS strategy for a distribution system with DGs and load static characteristics taken into consideration is developed. Based on the frequency and the rate of change of frequency, the presented strategy consists of several basic rounds and a special round. In the basic round, the frequency emergency can be alleviated by quickly shedding some loads. In the special round, the frequency security can be maintained, and the operating parameters of the distribution system can be optimized by adjusting the output powers of DGs and some loads. The modified IEEE 37-node test feeder is employed to demonstrate the essential features of the developed optimal UFLS strategy in the MATLAB/SIMULINK environment.
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
The steady problem of free surface flow due to a submerged line source is revisited for the case in which the fluid depth is finite and there is a stagnation point on the free surface directly above the source. Both the strength of the source and the fluid speed in the far field are measured by a dimensionless parameter, the Froude number. By applying techniques in exponential asymptotics, it is shown that there is a train of periodic waves on the surface of the fluid with an amplitude which is exponentially small in the limit that the Froude number vanishes. This study clarifies that periodic waves do form for flows due to a source, contrary to a suggestion by Chapman & Vanden-Broeck (2006, J. Fluid Mech., 567, 299--326). The exponentially small nature of the waves means they appear beyond all orders of the original power series expansion; this result explains why attempts at describing these flows using a finite number of terms in an algebraic power series incorrectly predict a flat free surface in the far field.
Resumo:
Average speed enforcement is a relatively new approach gaining popularity throughout Europe and Australia. This paper reviews the evidence regarding the impact of this approach on vehicle speeds, crashes rates and a number of additional road safety and public health outcomes. The economic and practical viability of the approach as a road safety countermeasure is also explored. A literature review, with an international scope, of both published and grey literature was conducted. There is a growing body of evidence to suggest a number of road safety benefits associated with average speed enforcement, including high rates of compliance with speed limits, reductions in average and 85th percentile speeds and reduced speed variability between vehicles. Moreover, the approach has been demonstrated to be particularly effective in reducing excessive speeding behaviour. Reductions in crash rates have also been reported in association with average speed enforcement, particularly in relation to fatal and serious injury crashes. In addition, the approach has been shown to improve traffic flow, reduce vehicle emissions and has also been associated with high levels of public acceptance. Average speed enforcement offers a greater network-wide approach to managing speeds that reduces the impact of time and distance halo effects associated with other automated speed enforcement approaches. Although comparatively expensive it represents a highly reliable approach to speed enforcement that produces considerable returns on investment through reduced social and economic costs associated with crashes.
Resumo:
This study evaluated effects of defensive pressure on running velocity in footballers during the approach to kick a stationary football. Approach velocity and ball speed/accuracy data were recorded from eight football youth academy participants (15.25, SD=0.46 yrs). Participants were required to run to a football to cross it to a receiver to score against a goal-keeper. Defensive pressure was manipulated across three counterbalanced conditions: defender-absent (DA); defender-far (DF) and defender-near (DN). Pass accuracy (percentages of a total of 32 trials with 95% confidence limits in parenthesis) did not significantly reduce under changing defensive pressure: DA, 78% (55–100%); DF, 78% (61–96%); DN, 59% (40–79%). Ball speed (m·s−1) significantly reduced as defensive pressure was included and increased: DA, 23.10 (22.38–23.83); DF, 20.40 (19.69–21.11); DN, 19.22 (18.51–19.93). When defensive pressure was introduced, average running velocity of attackers did not change significantly: DA versus DF (m·s−1), 5.40 (5.30–5.51) versus 5.41 (5.34–5.48). Scaling defender starting positions closer to the start position of the attacker (DN) significantly increased average running velocity relative to the DA and DF conditions, 5.60 (5.50–5.71). In the final approach footfalls, all conditions significantly differed: DA, 5.69 (5.35–6.03); DF, 6 .22 (5.93–6.50); DN, 6.52 (6.23–6.80). Data suggested that approach velocity is constrained by both presence and initial distance of the defender during task performance. Implications are that the expression of kicking behaviour is specific to a performance context and some movement regulation features will not emerge unless a defender is present as a task constraint in practice.
Resumo:
There has been an increasing number of fatal road crashes in Malaysia in the last two decades. Among those who die on Malaysian roads are children aged 0 to 18 years (i.e., 15.5% in 2009) (Mohamed, Wong, Hashim, & Othman, 2011) . The involvement of children in road trauma, and particularly children when they are in and around school zones, generates concern among the general public. The present study utilised an extended Theory of Planned Behaviour (TPB) framework, incorporating the additional predictors of mindfulness and habit, to understand drivers’ intention to comply with the school zone speed limit (SZSL). The study aimed to examine the extent to which TPB constructs, and additional predictors of mindfulness and habit, predicted drivers’ behavioural intention to comply with the SZSL. Malaysian drivers (N = 210) participated in this study via an online survey. Hierarchical regression was conducted, and the results showed that attitude, subjective norm, perceived behavioural control, and habit were significant predictors of intention to comply with the SZSL. Specifically, drivers who expressed more positive attitudes towards compliance, greater belief that significant others would want them to comply, and more confidence in their control of their speed were more likely to report an intention to comply. These drivers appear to have developed a positive habit of compliance, which may simply be a result of the engineering measures in place around school zones in Malaysia. Mindfulness was not a significant predictor in the final model. These findings provide some support for the explanatory value of the extended TPB framework in understanding the factors influencing drivers’ intention to comply with the SZSL. The present study also provides information of potential value in the development of interventions, such as public education and mass media campaigns, aimed at improving drivers’ compliance with the SZSL.
Resumo:
Motorway off-ramps are a significant source of traffic congestion and collisions. Heavy diverging traffic to off-ramps slows down the mainline traffic speed. When the off-ramp queue spillbacks onto the mainline, it leads to a major breakdown of the motorway capacity and a significant threat to the traffic safety. This paper proposes using Variable Speed Limits (VSL) for protection of the motorway off-ramp queue and thus to promote safety in congested diverging areas. To support timely activation of VSL in advance of queue spillover, a proactive control strategy is proposed based on a real-time off-ramp queue estimation and prediction. This process determines the estimated queue size in the near-term future, on which the decision to change speed limits is made. VSL can effectively slow down traffic as it is mandatory that drivers follow the changed speed limits. A collateral benefit of VSL is its potential effect on drivers making them more attentive to the surrounding traffic conditions, and prepared for a sudden braking of the leading car. This paper analyses and quantifies these impacts and potential benefits of VSL on traffic safety and efficiency using the microsimulation approach.
Resumo:
In the decision-making of multi-area ATC (Available Transfer Capacity) in electricity market environment, the existing resources of transmission network should be optimally dispatched and coordinately employed on the premise that the secure system operation is maintained and risk associated is controllable. The non-sequential Monte Carlo simulation is used to determine the ATC probability density distribution of specified areas under the influence of several uncertainty factors, based on which, a coordinated probabilistic optimal decision-making model with the maximal risk benefit as its objective is developed for multi-area ATC. The NSGA-II is applied to calculate the ATC of each area, which considers the risk cost caused by relevant uncertainty factors and the synchronous coordination among areas. The essential characteristics of the developed model and the employed algorithm are illustrated by the example of IEEE 118-bus test system. Simulative result shows that, the risk of multi-area ATC decision-making is influenced by the uncertainties in power system operation and the relative importance degrees of different areas.
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.
Resumo:
A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.
Resumo:
Ramp metering is an effective motorway control tool beneficial for mainline traffic, but the long on-ramp queues created interfere with surface traffic profoundly. This study deals with the conflict between mainline benefits and thecosts of on-ramp and surface traffic. A novel local on-ramp queue management strategy with mainline speed recovery is proposed. Microscopic simulation is used to test the new strategy and compare it with other strategies. Simulation results reveal that the ramp metering with queue management strategy provides a good balance between the mainline and on-ramp performances.