919 resultados para optical character recognition system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

After many years of scholar study, manuscript collections continue to be an important source of novel information for scholars, concerning both the history of earlier times as well as the development of cultural documentation over the centuries. D-SCRIBE project aims to support and facilitate current and future efforts in manuscript digitization and processing. It strives toward the creation of a comprehensive software product, which can assist the content holders in turning an archive of manuscripts into a digital collection using automated methods. In this paper, we focus on the problem of recognizing early Christian Greek manuscripts. We propose a novel digital image binarization scheme for low quality historical documents allowing further content exploitation in an efficient way. Based on the existence of closed cavity regions in the majority of characters and character ligatures in these scripts, we propose a novel, segmentation-free, fast and efficient technique that assists the recognition procedure by tracing and recognizing the most frequently appearing characters or character ligatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article describes researches of a method of person recognition by face image based on Gabor wavelets. Scales of Gabor functions are determined at which the maximal percent of recognition for search of a person in a database and minimal percent of mistakes due to false alarm errors when solving an access control task is achieved. The carried out researches have shown a possibility of improvement of recognition system work parameters in the specified two modes when the volume of used data is reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is about the research carried on developing an MPS (Multipurpose Portable System) which consists of an instrument and many accessories. The instrument is portable, hand-held, and rechargeable battery operated, and it measures temperature, absorbance, and concentration of samples by using optical principles. The system also performs auxiliary functions like incubation and mixing. This system can be used in environmental, industrial, and medical applications. ^ Research emphasis is on system modularity, easy configuration, accuracy of measurements, power management schemes, reliability, low cost, computer interface, and networking. The instrument can send the data to a computer for data analysis and presentation, or to a printer. ^ This dissertation includes the presentation of a full working system. This involved integration of hardware and firmware for the micro-controller in assembly language, software in C and other application modules. ^ The instrument contains the Optics, Transimpedance Amplifiers, Voltage-to-Frequency Converters, LCD display, Lamp Driver, Battery Charger, Battery Manager, Timer, Interface Port, and Micro-controller. ^ The accessories are a Printer, Data Acquisition Adapter (to transfer the measurements to a computer via the Printer Port and expand the Analog/Digital conversion capability), Car Plug Adapter, and AC Transformer. This system has been fully evaluated for fault tolerance and the schemes will also be presented. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In face recognition, where high-dimensional representation spaces are generally used, it is very important to take advantage of all the available information. In particular, many labelled facial images will be accumulated while the recognition system is functioning, and due to practical reasons some of them are often discarded. In this paper, we propose an algorithm for using this information. The algorithm has the fundamental characteristic of being incremental. On the other hand, the algorithm makes use of a combination of classification results for the images in the input sequence. Experiments with sequences obtained with a real person detection and tracking system allow us to analyze the performance of the algorithm, as well as its potential improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the world of professional sports shifting towards employing better sport analytics, the demand for vision-based performance analysis is growing increasingly in recent years. In addition, the nature of many sports does not allow the use of any kind of sensors or other wearable markers attached to players for monitoring their performances during competitions. This provides a potential application of systematic observations such as tracking information of the players to help coaches to develop their visual skills and perceptual awareness needed to make decisions about team strategy or training plans. My PhD project is part of a bigger ongoing project between sport scientists and computer scientists involving also industry partners and sports organisations. The overall idea is to investigate the contribution technology can make to the analysis of sports performance on the example of team sports such as rugby, football or hockey. A particular focus is on vision-based tracking, so that information about the location and dynamics of the players can be gained without any additional sensors on the players. To start with, prior approaches on visual tracking are extensively reviewed and analysed. In this thesis, methods to deal with the difficulties in visual tracking to handle the target appearance changes caused by intrinsic (e.g. pose variation) and extrinsic factors, such as occlusion, are proposed. This analysis highlights the importance of the proposed visual tracking algorithms, which reflect these challenges and suggest robust and accurate frameworks to estimate the target state in a complex tracking scenario such as a sports scene, thereby facilitating the tracking process. Next, a framework for continuously tracking multiple targets is proposed. Compared to single target tracking, multi-target tracking such as tracking the players on a sports field, poses additional difficulties, namely data association, which needs to be addressed. Here, the aim is to locate all targets of interest, inferring their trajectories and deciding which observation corresponds to which target trajectory is. In this thesis, an efficient framework is proposed to handle this particular problem, especially in sport scenes, where the players of the same team tend to look similar and exhibit complex interactions and unpredictable movements resulting in matching ambiguity between the players. The presented approach is also evaluated on different sports datasets and shows promising results. Finally, information from the proposed tracking system is utilised as the basic input for further higher level performance analysis such as tactics and team formations, which can help coaches to design a better training plan. Due to the continuous nature of many team sports (e.g. soccer, hockey), it is not straightforward to infer the high-level team behaviours, such as players’ interaction. The proposed framework relies on two distinct levels of performance analysis: low-level performance analysis, such as identifying players positions on the play field, as well as a high-level analysis, where the aim is to estimate the density of player locations or detecting their possible interaction group. The related experiments show the proposed approach can effectively explore this high-level information, which has many potential applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact-and thus low interference-experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used to investigate aeroelastic effects in high-speed turbomachines in detail. The results of these investigations are to be used to improve the aeroelastic design of modern turbomachines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Currently available volar locking plates for the treatment of distal radius fractures incorporate at least two distal screw rows for fixation of the metaphyseal fragment and have a variable-angle locking mechanism which allows placement of the screws in various directions There is, however no evidence that these plates translate into better outcomes or have superior biomechanical properties to first generation plates, which had a single distal screw row and fixed-angle locking. The aim of our biomechanical study was to compare fixed-angle single-row plates with variable-angle multi-row plates to clarify the optimal number of locking screws. MATERIALS AND METHODS: Five different plate-screw combinations of three different manufacturers were tested, each group consisting of five synthetic fourth generation distal radius bones. An AO type C2 fracture was created and the fractures were plated according to each manufacturer's recommendations. The specimens then underwent cyclic and load-to-failure testing. An optical motion analysis system was used to detect displacement of fragments. RESULTS: No significant differences were detected after cyclic loading as well as after load-to-failure testing, neither in regard to axial deformation, implant rigidity or maximum displacement. The fixed-angle single-row plate showed the highest pre-test rigidity, least increase in post-testing rigidity and highest load-to-failure rigidity and least radial shortening. The radial shortening of plates with two distal screw rows was 3.1 and 4.3 times higher, respectively, than that of the fixed-angle single-row plate. CONCLUSION: The results of our study indicate that two distal screw rows do not add to construct rigidity and resistance against loss of reduction. Well conducted clinical studies based on the findings of biomechanical studies are necessary to determine the optimal number of screws necessary to achieve reproducibly good results in the treatment of distal radius fractures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years face recognition systems have been applied in various useful applications, such as surveillance, access control, criminal investigations, law enforcement, and others. However face biometric systems can be highly vulnerable to spoofing attacks where an impostor tries to bypass the face recognition system using a photo or video sequence. In this paper a novel liveness detection method, based on the 3D structure of the face, is proposed. Processing the 3D curvature of the acquired data, the proposed approach allows a biometric system to distinguish a real face from a photo, increasing the overall performance of the system and reducing its vulnerability. In order to test the real capability of the methodology a 3D face database has been collected simulating spoofing attacks, therefore using photographs instead of real faces. The experimental results show the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present SMART (Sequence Matching Across Route Traversals): a vision- based place recognition system that uses whole image matching techniques and odometry information to improve the precision-recall performance, latency and general applicability of the SeqSLAM algorithm. We evaluate the system’s performance on challenging day and night journeys over several kilometres at widely varying vehicle velocities from 0 to 60 km/h, compare performance to the current state-of- the-art SeqSLAM algorithm, and provide parameter studies that evaluate the effectiveness of each system component. Using 30-metre sequences, SMART achieves place recognition performance of 81% recall at 100% precision, outperforming SeqSLAM, and is robust to significant degradations in odometry.