926 resultados para nuclear densities and introduced new imaginary potential component
Resumo:
Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.
Resumo:
Machado-Joseph disease is the most frequently found dominantly-inherited cerebellar ataxia. Over-repetition of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within the ataxin 3 protein, which upon proteolysis may trigger Machado-Joseph disease. We investigated the role of calpains in the generation of toxic ataxin 3 fragments and pathogenesis of Machado-Joseph disease. For this purpose, we inhibited calpain activity in mouse models of Machado-Joseph disease by overexpressing the endogenous calpain-inhibitor calpastatin. Calpain blockage reduced the size and number of mutant ataxin 3 inclusions, neuronal dysfunction and neurodegeneration. By reducing fragmentation of ataxin 3, calpastatin overexpression modified the subcellular localization of mutant ataxin 3 restraining the protein in the cytoplasm, reducing aggregation and nuclear toxicity and overcoming calpastatin depletion observed upon mutant ataxin 3 expression. Our findings are the first in vivo proof that mutant ataxin 3 proteolysis by calpains mediates its translocation to the nucleus, aggregation and toxicity and that inhibition of calpains may provide an effective therapy for Machado-Joseph disease.
Resumo:
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
Resumo:
BACKGROUND: The activity of the renin-angiotensin system is usually evaluated as plasma renin activity (PRA, ngAI/ml per h) but the reproducibility of this enzymatic assay is notoriously scarce. We compared the inter and intralaboratory reproducibilities of PRA with those of a new automated chemiluminescent assay, which allows the direct quantification of immunoreactive renin [chemiluminescent immunoreactive renin (CLIR), microU/ml]. METHODS: Aliquots from six pool plasmas of patients with very low to very high PRA levels were measured in 12 centres with both the enzymatic and the direct assays. The same methods were applied to three control plasma preparations with known renin content. RESULTS: In pool plasmas, mean PRA values ranged from 0.14 +/- 0.08 to 18.9 +/- 4.1 ngAI/ml per h, whereas those of CLIR ranged from 4.2 +/- 1.7 to 436 +/- 47 microU/ml. In control plasmas, mean values of PRA and of CLIR were always within the expected range. Overall, there was a significant correlation between the two methods (r = 0.73, P < 0.01). Similar correlations were found in plasmas subdivided in those with low, intermediate and high PRA. However, the coefficients of variation among laboratories found for PRA were always higher than those of CLIR, ranging from 59.4 to 17.1% for PRA, and from 41.0 to 10.7% for CLIR (P < 0.01). Also, the mean intralaboratory variability was higher for PRA than for CLIR, being respectively, 8.5 and 4.5% (P < 0.01). CONCLUSION: The measurement of renin with the chemiluminescent method is a reliable alternative to PRA, having the advantage of a superior inter and intralaboratory reproducibility.
Resumo:
Activation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway is known to play a key role in cardiogenesis and to afford cardioprotection against ischemia-reperfusion in adult. However, involvement of JAK2/STAT3 pathway and its interaction with other signaling pathways in developing heart transiently submitted to anoxia remains to be explored. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (80 min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or the PhosphoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002. Time course of phosphorylation of STAT3α(tyrosine705) and Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K, Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extracellular signal-Regulated Kinase 2 (ERK2)] was determined in homogenate and in enriched nuclear and cytoplasmic fractions of the ventricle. STAT3 DNA-binding was determined. The chrono-, dromo- and inotropic disturbances were also investigated by electrocardiogram and mechanical recordings. Phosphorylation of STAT3α(tyr705) was increased by reoxygenation, reduced (~50%) by MPG or AG490 but not affected by LY-294002. STAT3 and GSK3beta were detected both in nuclear and cytoplasmic fractions while PI3K, Akt and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-binding. AG490 decreased the reoxygenation-induced phosphorylation of Akt and ERK2 and phosphorylation/inhibition of GSK3beta in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened variability of cardiac cycle length and prolonged arrhythmias as compared to control hearts. Thus, besides its nuclear translocation without transcriptional activity, oxyradicals-activated STAT3α can rapidly interact with RISK proteins present in nucleus and cytoplasm, without dual interaction, and reduce the anoxia-reoxygenation-induced arrhythmias in the embryonic heart.
Resumo:
The purposes of this study were to determine the distribution and climatic patterns of current and future physic nut (Jatropha curcas) cultivation regions in Mexico, and to identify possible locations for in vivo germplasm banks establishment, using geographic information systems. Current climatic data were processed by Floramap software to obtain distribution maps and climatic patterns of regions where wild physic nuts could be found. DIVA-GIS software analyzed current climatic data (Worldclim model) and climatic data generated by CCM3 model to identify current and future physic nut cultivation regions, respectively. The distribution map showed that physic nut was present in most of the tropical and subtropical areas of Mexico, which corresponded to three agroclimatic regions. Climate types were Aw2, Aw1, and Bs1, for regions 1, 2 and 3, respectively. Nontoxic genotypes were associated with region 2, and toxic genotypes were associated with regions 1 and 3. According to the current and future cultivation regions identified, the best suitable ones to establish in vivo germplasm collections were the coast of Michoacán and the Isthmus of Tehuantepec, located among the states of Veracruz, Oaxaca and Chiapas.
Resumo:
CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The objective of this work was to evaluate the performance of Pacific marine shrimp (Litopenaeus vannamei) and tilapia (Oreochromis niloticus), in a polyculture in tanks subjected to different stocking densities and feeding strategies, in comparison with monoculture. Two experiments were performed, at the same time, in a completely randomized design with three treatments and four replicates each. Treatments for experiment I were: monoculture with 10 shrimp per m² (10S:0T); polyculture with 10 shrimp and 0.5 tilapia per m² (10S:0.5T); and polyculture with 10 shrimp and 1 tilapia per m² (10S:1T). Shrimp was the main crop, and feed was provided based on shrimp biomass. Treatments for experiment II were: monoculture with 2 tilapia per m² (2T:0S); polyculture with 2 tilapia and 2.5 shrimp per m² (2T:2.5S); and polyculture with 2 tilapia and 5 shrimp per m² (2T:5S). Tilapia was the main crop, and feed was provided based on fish requirements. In the experiment I, tilapia introduction to shrimp culture resulted in lower shrimp growth and poor feed conversion rate. In experiment II, shrimp introduction to tilapia culture did not interfere with fish performance. Polyculture is more efficient with the combination of 2 tilapia and 2.5 or 5 shrimp per m² and feed based on fish requirements.
Resumo:
Cell therapy for nucleus pulposus (NP) regeneration is an attractive treatment for early disc degeneration as shown by studies using autologous NP cells or stem cells. Another potential source of cells is foetal cells. We investigated the feasibility of isolating foetal cells from human foetal spine tissues and assessed their chondrogenic potential in alginate bead cultures. Histology and immunohistochemistry of foetal tissues showed that the structure and the matrix composition (aggrecan, type I and II collagen) of foetal intervertebral disc (IVD) were similar to adult IVD. Isolated foetal cells were cultured in monolayer in basic media supplemented with 10% Fetal Bovine Serum (FBS) and from each foetal tissue donation, a cell bank of foetal spine cells at passage 2 was established and was composed of around 2000 vials of 5 million cells. Gene expression and immunohistochemistry of foetal spine cells cultured in alginate beads during 28 days showed that cells were able to produce aggrecan and type II collagen and very low level of type I and type X collagen, indicating chondrogenic differentiation. However variability in matrix synthesis was observed between donors. In conclusion, foetal cells could be isolated from human foetal spine tissues and since these cells showed chondrogenic potential, they could be a potential cell source for IVD regeneration.
Resumo:
In the past f ew years numerous authors have examined how the current economic crisis in Spain has dif f erential impacts on women and men.1 While this is important to show, this article’s goal is to make the leap f rom a mere description of the gendered effects of the crisis, to an analysis of some of the very gendered processes that shape it at its core. In other words, the intent is to understand how both the crisis itself and the ways the state manages it are structurally shaped by gender.
Resumo:
Symbiotic interactions between ascidians (sea-squirts) and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S-23S rRNA internal transcribed spacer region (ITS) and by examining symbiont morphology with transmission electron (TEM) and confocal microscopy (CM). As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d) and phycobiliproteins (PBPs) within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.
Resumo:
We analyze the influence of the single-particle structure on the neutron density distribution and the neutron skin in Ca, Ni, Zr, Sn, and Pb isotopes. The nucleon density distributions are calculated in the Hartree-Fock+BCS approach with the SLy4 Skyrme force. A close correlation is found between the quantum numbers of the valence neutrons and the changes in the position and the diffuseness of the nuclear surface, which in turn affect the neutron skin thickness. Neutrons in the valence orbitals with low principal quantum number and high angular momentum mainly displace the position of the neutron surface outwards, while neutrons with high principal quantum number and low angular momentum basically increase the diffuseness of the neutron surface. The impact of the valence shell neutrons on the tail of the neutron density distribution is discussed.