981 resultados para neutral herbicide
Resumo:
M.R. Rocha-Pereira, A.E. Klar, D. Martins, G.S. Ferreira de Souza, and J. Villalba. 2012. Effect of water stress on herbicide efficiency applied to Urochloa decumbens. Cien. Inv. Agr. 39(1): 211-220. This project aimed to measure the control efficiency of Acctil Coenzime A Carboxilase (ACCase)-inhibiting herbicides post-emergence applied to Urochloa decumbens (Stapf) R.D. Webster under different soil water contents. The experiment was conducted in a greenhouse at the Department of Plant Production, Faculty of Agronomic Sciences, UNESP, Botucatu, Silo Paulo. The experimental design was a completely randomized design with four replications, consisting of a 9 x 4 factorial, combined with three water management systems (-0.03, -0.07 and -1.5 MPa) and three herbicides (fluazifop-p-butyl, haloxyfop-methyl and sethoxydim + oil using four doses (100, 50, 25 and 0% of the recommended dose). Herbicide applications were conducted at two vegetative stages for all species: a 4-6 leaf stage and a 2-3 tiller stage. The physiological parameters evaluated were as follows: photosynthetic rate, stomatal conductance, transpiration, leaf temperature and plant dry matter. The visual assessments of phytotoxicity were performed 28 days after herbicide application. The control efficiency was lower in plants grown under soil water potential conditions of -1.5 MPa, regardless of the herbicide used during the two application stages; however, none reached 100% control. Fractionation of the recommended herbicide doses reduced effectiveness, with the exception of the 50%-dose application of sethoxydim and fluazifop-p-butyl herbicides, which were also effective in the 4-6 leaf plant control under normal water conditions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we investigate the relationships between different concepts of stability in measure for the solutions of an autonomous or periodic neutral functional differential equation.
Resumo:
The problem of confinement of neutral fermions in two-dimensional space-time is approached with a pseudoscalar double-step potential in the Dirac equation. Bound-state solutions are obtained when the coupling is of sufficient intensity. The confinement is made plausible by arguments based on effective mass and anomalous magnetic interaction. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The problem of scattering of neutral fermions in two-dimensional spacetime is approached with a pseudoscalar potential step in the Dirac equation. Some unexpected aspects of the solutions beyond the absence of Klein's paradox are presented. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength. Added plausibility for the existence of bound-state solutions in a pseudoscalar double-step potential found in a recent Letter is given. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength.
Resumo:
The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E = +/- mc(2), the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (similar to tan gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)