936 resultados para networked robotics
Resumo:
Across the world there are many bodies currently involved in researching into the design of autonomous guided vehicles (AGVs). One of the greatest problems at present however, is that much of the research work is being conducted in isolated groups, with the resulting AGVs sensor/control/command systems being almost completely nontransferable to other AGV designs. This paper describes a new modular method for robot design which when applied to AGVs overcomes the above problems. The method is explained here with respect to all forms of robotics but the examples have been specifically chosen to reflect typical AGV systems.
Resumo:
This paper proposes a Dual-Magnet Magnetic Compliance Unit (DMCU) for use in medium sized space rover platforms to enhance terrain handling capabilities and speed of traversal. An explanation of magnetic compliance and how it can be applied to space robotics is shown, along with an initial mathematical model for this system. A design for the DMCU is proposed along with a 4-wheeled DMCU Testing Rig.
Resumo:
Drawing from the organisational learning and governance literature, this paper assesses four internationally networked governmental and non‐governmental organisations in the UK addressing climate change. We analyse how those concerned understand the climate change crisis, what mechanisms are put in place to address information flows, and what evidence there is of learning through sharing information between the organisational headquarters and their regional offices. The most striking finding is the evidence of learning that largely depends on ad‐hoc informal processes and shadow networks.
Resumo:
Robotics is a key theme in many of the degrees offered in Systems Engineering. The topic has proved useful in attracting students to the University, and it also provides the basis of much practical and project work throughout the degrees. This paper focuses on one aspect, a Part 2 project in which students doing various degrees work together to develop a mobile robot which is controlled remotely to navigate an environment and perform specific tasks. In addition to providing practical experience of relevant academic topics, this project helps to contribute to key teaching and learning priorities including problem based learning, motivation and important employability skills.
Resumo:
This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor nodes may be deployed to monitor each separate room. In this work, a quad tree based data gathering scheme is proposed whereby the mobile sink physically moves through every room and logically links all separated sub-networks together. The proposed scheme sequentially collects data from the monitoring environment and transmits the information back to a base station. According to the sensor nodes information, the base station can command a cleaning robot to move to a specific location in the home environment. The quad tree based data gathering scheme minimizes the data gathering tour length and time through the efficient allocation of data gathering areas. A calculated shortest path data gathering tour can efficiently be allocated to the robotic cleaner to complete the cleaning task within a minimum time period. Simulation results show that the proposed scheme can effectively allocate and control the cleaning area to the robot vacuum cleaner without any direct interference from the consumer. The performance of the proposed scheme is then validated with a set of practical sequential data gathering tours in a typical office/home environment.
Resumo:
Sociable robots are embodied agents that are part of a heterogeneous society of robots and humans. They Should be able to recognize human beings and each other, and to engage in social, interactions. The use of a robotic architecture may strongly reduce the time and effort required to construct a sociable robot. Such architecture must have structures and mechanisms to allow social interaction. behavior control and learning from environment. Learning processes described oil Science of Behavior Analysis may lead to the development of promising methods and Structures for constructing robots able to behave socially and learn through interactions from the environment by a process of contingency learning. In this paper, we present a robotic architecture inspired from Behavior Analysis. Methods and structures of the proposed architecture, including a hybrid knowledge representation. are presented and discussed. The architecture has been evaluated in the context of a nontrivial real problem: the learning of the shared attention, employing an interactive robotic head. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human and the environment. The obtained results show that the robotic architecture is able to produce appropriate behavior and to learn from social interaction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The context of this report and the IRIDIA laboratory are described in the preface. Evolutionary Robotics and the box-pushing task are presented in the introduction.The building of a test system supporting Evolutionary Robotics experiments is then detailed. This system is made of a robot simulator and a Genetic Algorithm. It is used to explore the possibility of evolving box-pushing behaviours. The bootstrapping problem is explained, and a novel approach for dealing with it is proposed, with results presented.Finally, ideas for extending this approach are presented in the conclusion.
Resumo:
This paper aims at describing an educational system for teaching and learning robotic systems. Multimedia resources were used to construct a virtual laboratory where users are able to use functionalities of a virtual robotic arm, by moving and clicking the mouse without caring about the detailed internal robot operation. Moreover through the multimedia system the user can interact with a real robot arm. The engineering students are the target public of the developed system. With its contents and interactive capabilities, it has been used as a support to the traditional face-to-face classes on the subject of robotics.. In the paper it is first introduced the metaphor of Virtual Laboratory used in the system. Next, it is described the Graphical and Multimedia Environment approach: an interactive graphic user interface with a 3D environment for simulation. Design and implementation issues of the real-time interactive multimedia learning system, which supports the W3C SMIL standard for presenting the real-time multimedia teaching material, are described. Finally, some preliminary conclusions and possible future works from this research are presented.
Resumo:
This paper describes the development of a multimedia educational system to teach and learn robotic systems. Multimedia resources have been used to build a virtual laboratory where users are able to utilize functions of a robotic arm, by moving and clicking the mouse without worrying about the detailed robot internal operation. The multimedia system is integrated with a real robotic arm, which was also developed at the university. Through robotic topic presentations and interactive capabilities provided by this system and its tools, students can devote themselves on the learning process just as they do in the traditional face-to-face classes. and the target public of this system are the engineering students themselves.