945 resultados para near-infrared Raman spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, I describe studies on fabrication, spectral characteristics and applications of tilted fibre gratings (TFGs) with small, large and 45° tilted structures and novel developments in fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in normal silica and mid-infrared (mid-IR) glass fibres using near-IR femtosecond laser. One of the major contributions presented in this thesis is the systematic investigation of structures, inscription methods and spectral, polarisation dependent loss (PDL) and thermal characteristics of TFGs with small (<45°), large (>45°) and 45° tilted structures. I have experimentally characterised TFGs, obtaining relationships between the radiation angle, central wavelength of the radiation profile, Bragg resonance and the tilt angle, which are consistent with theoretical simulation based on the mode-coupling theory. Furthermore, thermal responses have been measured for these three types of TFGs, showing the transmission spectra of large and 45° TFGs are insensitive to the temperature change, unlike the normal and small angle tilted FBGs. Based on the distinctive optical properties, TFGs have been developed into interrogation system and sensors, which form the other significant contributions of the work presented in this thesis. The 10°-TFG based 800nm WDM interrogation system can function not just as an in-fibre spectrum analyser but also possess refractive index sensing capability. By utilising the unique polarisation properties, the 81 °-TFG based sensors are capable of sensing the transverse loading and twisting with sensitivities of 2.04pW/(kg/m) and 145.90pW/rad, repectively. The final but the most important contribution from the research work presented in this thesis is the development of novel grating inscription techniques using near-IR femtosecond laser. A number of LPGs and FBGs were successfully fabricated in normal silica and mid-IR glass fibres using point-by-point and phase-mask techniques. LPGs and 1st and 2nd order FBGs have been fabricated in these mid-IR glass fibres showing resonances covering the wavelength range from 1200 to 1700nm with the strengths up to 13dB. In addition, the thermal and strain sensitivities of these gratings have been systematically investigated. All the results from these initial but systematic works will provide useful function characteristics information for future fibre grating based devices and applications in mid-IR range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first experimental measurements on the spectral modification of type IA fibre Bragg gratings, incorporated in an optical network, which result from the use of high-power, near-infrared lasers. The fibre grating properties are modified in a controlled manner by exploiting the characteristics of the inherent 1400 nm absorption band of the optical fibre, which grows in strength during the type IA grating inscription. If the fibre network is illuminated with a high-power laser, having an emission wavelength coincident with the absorption band, the type IA centre wavelength and chirp can be modified. Furthermore, partial grating erasure is demonstrated. This has serious implications when using type IA gratings in an optical network, as their spectrum can be modified using purely optical methods (no external heating source acts on the fibre), and to their long-term stability as the grating is shown to decay. Conversely, suitably stabilized gratings can be spectrally tailored, for tuning fibre lasers or edge filter modification in sensing applications, by purely optical means. © 2006 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present the design and fabrication of multi-notch optical fibre Bragg gratings for suppressing OH emission lines in the near infrared spectra of the night sky for astrophysical applications. We demonstrate a novel approach of fabricating 2, 3 and 5-notch filters using the phase mask technology, which show a good match with the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. ^ The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. ^ In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. ^ This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the American Podiatric Medical Association, about 15 percent of the patients with diabetes would develop a diabetic foot ulcer. Furthermore, foot ulcerations leads to 85 percent of the diabetes-related amputations. Foot ulcers are caused due to a combination of factors, such as lack of feeling in the foot, poor circulation, foot deformities and the duration of the diabetes. To date, the wounds are inspected visually to monitor the wound healing, without any objective imaging approach to look before the wound’s surface. Herein, a non-contact, portable handheld optical device was developed at the Optical Imaging Laboratory as an objective approach to monitor wound healing in foot ulcer. This near-infrared optical technology is non-radiative, safe and fast in imaging large wounds on patients. The FIU IRB-approved study will involve subjects that have been diagnosed with diabetes by a physician and who have developed foot ulcers. Currently, in-vivo imaging studies are carried out every week on diabetic patients with foot ulcers at two clinical sites in Miami. Near-infrared images of the wound are captured on subjects every week and the data is processed using customdeveloped Matlab-based image processing tools. The optical contrast of the wound to its peripheries and the wound size are analyzed and compared from the NIR and white light images during the weekly systematic imaging of wound healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Flux Cored Arc Welding (FCAW) process, the transfer of filler metal (metal transfer modes) to the base material to accomplish the weld bead determines the weld quality and therefore studies of such phenomena is demanded. Thus, in this work, the metal transfer through the FCAW process is investigated by filming the phenomena with the assist of near infrared visualization. During the literature survey, it was found that this technic has not been used so far for analyzing the FCAW process. It must be pointed out that the radiation emitted from the weld arc, fumes and particles (spattering) in this process represent a barrier for these studies based in the process visualization. The monitoring of metal transfer for FCAW process was carried out within the operational envelope of voltage and wire feed speed with the electrode E71T-1 (1.2 mm diameter) and Ar+25%CO2 as a shielding gas. A local developed near infrared filming with frame rate of 300 Hz was employed for metal transfer visualization in order to contribute to a better understanding of this process and evaluating characteristics of metal transfer, unlike previous studies, which used shadowgraph technique. It can clearly be seen how the droplet is created and transferred in this process and also identify the different modes of metal transfer by changing the parameters of voltage and wire feed speed in metal transfer maps. The final result of this study is the metal transfer mode maps, which establish suitable conditions and provide the basis for developing arc control strategies for the FCAW process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use Hubble Space Telescope (HST) NICMOS continuum and Paα observations to study the near-infrared and star formation properties of a representative sample of 30 local (d ~ 35-75 Mpc) luminous infrared galaxies (LIRGs, infrared [8-1000 μm] luminosities of log L_IR = 11-11.9 L_☉). The data provide spatial resolutions of 25-50 pc and cover the central ~3.3-7.1 kpc regions of these galaxies. About half of the LIRGs show compact (~1-2 kpc) Paα emission with a high surface brightness in the form of nuclear emission, rings, and minispirals. The rest of the sample show Paα emission along the disk and the spiral arms extending over scales of 3-7 kpc and larger. About half of the sample contains H II regions with Hα luminosities significantly higher than those observed in normal galaxies. There is a linear empirical relationship between the mid-IR 24 μm and hydrogen recombination (extinction-corrected Paα) luminosity for these LIRGs, and the H II regions in the central part of M51. This relation holds over more than four decades in luminosity, suggesting that the mid-IR emission is a good tracer of the star formation rate (SFR). Analogous to the widely used relation between the SFR and total IR luminosity of R. Kennicutt, we derive an empirical calibration of the SFR in terms of the monochromatic 24 μm luminosity that can be used for luminous, dusty galaxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ∼ 100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ∼ 140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cadwaladerite (Al(OH)2Cl∙4H2O) collected from Cerro Pintados, Chile described by Gordon in 1941 is designated as “doubtful” by the IMA. Material collected from the same locality in 2015 resembling the description of cadwaladerite gave a powder XRD pattern similar to lesukite (Al2(OH)5Cl∙2H2O). However, Gordon provided no X-ray data for his material from Cerro Pintados. In order to determine whether cadwaladerite and lesukite are the same mineral species, measurements were made on a suite of samples from various localities. A portion of the material collected by Gordon in 1941 was also obtained from the Mineralogical Museum of Harvard University. Type material of lesukite from a fumarolic environment at the Tolbachik Fissure in Kamchatka, Russia was obtained as well as lesukite from the Maria Mine, Chile (Arica Province) and a previously undescribed locality for lesukite (Barranaca del Sulfato, Mejillones Peninsula, Antofagasta Province). All samples are yellow to yellow-orange in colour and all exhibit small cubic crystals (up to 50µm), even Gordon’s cadwaladerite which was thought to be amorphous. The Chilean samples are all associated with halite and sometimes with anhydrite. These five samples were studied by SEM, FTIR, powder XRD, and Raman spectroscopy. A ratio of Al:Cl less than or equal to 1.3:1 was observed for all the samples, including measurements made on lesukite from the Russian locality Vergasova et al. studied in 1997, and determined to have a 2:1 ratio. SEM-EDS analyses also show all samples to have minor iron substitution, as well as copper substitution in two samples. FTIR spectra are very similar for all samples. Raman spectroscopy done on both samples collected in Cerro Pintados and the Russian lesukite gave similar spectra. Powder XRD analyses on all samples showed spectra identified to be lesukite, including Gordon’s cadwaladerite. Crystal cell parameters calculated from powder XRD ranged from 19.778Å to 19.878Å. Results using modern instrumental techniques confirm Gordon’s cadwaladerite, collected in 1939 and described in 1941, and lesukite are the same mineral species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large (10 × 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these "Poly-SERS" films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl- ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl- and these materials allowed phenytoin to be detected at 1.8 mg L-1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10-20 mg L-1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of seized "legal high'' samples and pure novel psychoactive substances have been examined by surface-enhanced Raman spectroscopy using polymer-stabilized Ag nanoparticle (Poly-SERS) films. The films both quenched fluorescence in bulk samples and allowed identification of mu g quantities of drugs collected with wet swabs from contaminated surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year. Method The oat grains were kept as raw (control) or heated in an air-draft oven (dry roasting: DO) at 120 °C for 60 min and under microwave irradiation (MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy. Results The results showed that rumen degradability of dry matter, protein and starch was significantly lower (P <0.05) for MIO compared to control and DO treatments. A higher protein α-helix to β-sheet and a lower amide I to starch area ratio were observed for MIO compared to DO and/or raw treatment. A negative correlation (−0.99, P < 0.01) was observed between α-helix or amide I to starch area ratio and dry matter. A positive correlation (0.99, P < 0.01) was found between protein β-sheet and crude protein. Conclusion The results reveal that oat grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.