890 resultados para monotone estimating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research aimed to compare two female broiler breeder ages during the incubation period regarding management using the Analytic Hierarchy Process method (AHP). This method is characterized by the possibility of analyzing a multicriteria problem and assists a decision making. This study was carried out on a commercial hatchery located in São Paulo, Brazil. Two ages of broiler breeder (42 and 56 weeks) were compared relative to production rate. Production index data were the same in both ages and were submitted to multicriteria decision analysis using the AHP method. The results indicate that broiler breeders of 42 weeks presented better performance than those of 56 week-old. The setter phase (incubation) is more critical than the hatcher. The AHP method was efficient for this analysis and can serve as a methodological basis for future studies to improve the hatchability of broilers eggs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to identify differences in swine vocalization pattern according to animal gender and different stress conditions. A total of 150 barrow males and 150 females (Dalland® genetic strain), aged 100 days, were used in the experiment. Pigs were exposed to different stressful situations: thirst (no access to water), hunger (no access to food), and thermal stress (THI exceeding 74). For the control treatment, animals were kept under a comfort situation (animals with full access to food and water, with environmental THI lower than 70). Acoustic signals were recorded every 30 minutes, totaling six samples for each stress situation. Afterwards, the audios were analyzed by Praat® 5.1.19 software, generating a sound spectrum. For determination of stress conditions, data were processed by WEKA® 3.5 software, using the decision tree algorithm C4.5, known as J48 in the software environment, considering cross-validation with samples of 10% (10-fold cross-validation). According to the Decision Tree, the acoustic most important attribute for the classification of stress conditions was sound Intensity (root node). It was not possible to identify, using the tested attributes, the animal gender by vocal register. A decision tree was generated for recognition of situations of swine hunger, thirst, and heat stress from records of sound intensity, Pitch frequency, and Formant 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some models have been developed using agrometeorological and remote sensing data to estimate agriculture production. However, it is expected that the use of SAR images can improve their performance. The main objective of this study was to estimate the sugarcane production using a multiple linear regression model which considers agronomic data and ALOS/PALSAR images obtained from 2007/08, 2008/09 and 2009/10 cropping seasons. The performance of models was evaluated by coefficient of determination, t-test, Willmott agreement index (d), random error and standard error. The model was able to explain 79%, 12% and 74% of the variation in the observed productions of the 2007/08, 2008/09 and 2009/10 cropping seasons, respectively. Performance of the model for the 2008/09 cropping season was poor because of the occurrence of a long period of drought in that season. When the three seasons were considered all together, the model explained 66% of the variation. Results showed that SAR-based yield prediction models can contribute and assist sugar mill technicians to improve such estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic dynamical systems exhibit trajectories in their phase space that converges to a strange attractor. The strangeness of the chaotic attractor is associated with its dimension in which instance it is described by a noninteger dimension. This contribution presents an overview of the main definitions of dimension discussing their evaluation from time series employing the correlation and the generalized dimension. The investigation is applied to the nonlinear pendulum where signals are generated by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate experimental data sets, a random noise is introduced in the time series. State space reconstruction and the determination of attractor dimensions are carried out regarding periodic and chaotic signals. Results obtained from time series analyses are compared with a reference value obtained from the analysis of mathematical model, estimating noise sensitivity. This procedure allows one to identify the best techniques to be applied in the analysis of experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focused on identifying various system boundaries and evaluating methods of estimating energy performance of biogas production. First, the output-input ratio method used for evaluating energy performance from the system boundaries was reviewed. Secondly, ways to assess the efficiency of biogas use and parasitic energy demand were investigated. Thirdly, an approach for comparing biogas production to other energy production methods was evaluated. Data from an existing biogas plant, located in Finland, was used for the evaluation of the methods. The results indicate that calculating and comparing the output-input ratios (Rpr1, Rpr2, Rut, Rpl and Rsy) can be used in evaluating the performance of biogas production system. In addition, the parasitic energy demand calculations (w) and the efficiency of utilizing produced biogas (η) provide detailed information on energy performance of the biogas plant. Furthermore, Rf and energy output in relation to total solid mass of feedstock (FO/TS) are useful in comparing biogas production with other energy recovery technologies. As a conclusion it is essential for the comparability of biogas plants that their energy performance would be calculated in a more consistent manner in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioanalytical data from a bioequivalence study were used to develop limited-sampling strategy (LSS) models for estimating the area under the plasma concentration versus time curve (AUC) and the peak plasma concentration (Cmax) of 4-methylaminoantipyrine (MAA), an active metabolite of dipyrone. Twelve healthy adult male volunteers received single 600 mg oral doses of dipyrone in two formulations at a 7-day interval in a randomized, crossover protocol. Plasma concentrations of MAA (N = 336), measured by HPLC, were used to develop LSS models. Linear regression analysis and a "jack-knife" validation procedure revealed that the AUC0-¥ and the Cmax of MAA can be accurately predicted (R²>0.95, bias <1.5%, precision between 3.1 and 8.3%) by LSS models based on two sampling times. Validation tests indicate that the most informative 2-point LSS models developed for one formulation provide good estimates (R²>0.85) of the AUC0-¥ or Cmax for the other formulation. LSS models based on three sampling points (1.5, 4 and 24 h), but using different coefficients for AUC0-¥ and Cmax, predicted the individual values of both parameters for the enrolled volunteers (R²>0.88, bias = -0.65 and -0.37%, precision = 4.3 and 7.4%) as well as for plasma concentration data sets generated by simulation (R²>0.88, bias = -1.9 and 8.5%, precision = 5.2 and 8.7%). Bioequivalence assessment of the dipyrone formulations based on the 90% confidence interval of log-transformed AUC0-¥ and Cmax provided similar results when either the best-estimated or the LSS-derived metrics were used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The freezing times of fruit pulp models packed and conditioned in multi-layered boxes were evaluated under conditions similar to those employed commercially. Estimating the freezing time is a difficult practice due to the presence of significant voids in the boxes, whose influence may be analyzed by means of various methods. In this study, a procedure for estimating freezing time by using the models described in the literature was compared with experimental measurements by collecting time/temperature data. The following results show that the airflow through packages is a significant parameter for freezing time estimation. When the presence of preferential channels was considered, the predicted freezing time in the models could be 10% lower than the experimental values, depending on the method. The isotherms traced as a function of the location of the samples inside the boxes showed the displacement of the thermal center in relation to the geometric center of the product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reprinted from Appleton's popular science monthly for June, 1899.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that providing learners Knowledge of Results (KR) after “good trials” rather than “poor trials” is superior for learning. The present study examined whether requiring participants to estimate their three best or three worst trials in a series of six trial blocks before receiving KR would prove superior to learning compared to not estimating their performance. Participants were required to push and release a slide along a confined pathway using their non-dominant hand to a target distance (133cm). The retention and transfer data suggest those participants who received KR after good trials demonstrated superior learning and performance estimations compared to those receiving KR after poor trials. The results of the present experiment offer an important theoretical extension in our understanding of the role of KR content and performance estimation on motor skill learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several Authors Have Discussed Recently the Limited Dependent Variable Regression Model with Serial Correlation Between Residuals. the Pseudo-Maximum Likelihood Estimators Obtained by Ignoring Serial Correlation Altogether, Have Been Shown to Be Consistent. We Present Alternative Pseudo-Maximum Likelihood Estimators Which Are Obtained by Ignoring Serial Correlation Only Selectively. Monte Carlo Experiments on a Model with First Order Serial Correlation Suggest That Our Alternative Estimators Have Substantially Lower Mean-Squared Errors in Medium Size and Small Samples, Especially When the Serial Correlation Coefficient Is High. the Same Experiments Also Suggest That the True Level of the Confidence Intervals Established with Our Estimators by Assuming Asymptotic Normality, Is Somewhat Lower Than the Intended Level. Although the Paper Focuses on Models with Only First Order Serial Correlation, the Generalization of the Proposed Approach to Serial Correlation of Higher Order Is Also Discussed Briefly.