973 resultados para molecule imprinting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paramagnetic triple decker complexes of lanthanides are promising Single Molecule Magnets (SMMs), with many potential uses. Some of them show preferable relaxation behavior, which enables the recording of well resolved NMR spectra. These axially symmetric complexes are also strongly magnetically anisotropic, and this property can be described with the axial component of the magnetic susceptibility tensor, χa. For triple decker complexes with phthalocyanine based ligands, the Fermi˗contact contribution is small. Hence, together with the axial symmetry, the experimental chemical shifts in 1H and 13C NMR spectra can be modeled easily by considering pseudocontact and orbital shifts alone. This results in the determination of the χa value, which is also responsible for molecular alignment and consequently for the observation of residual dipolar couplings (RDCs). A detailed analysis of the experimental 1H-13C and 1H-1H couplings revealed that contributions from RDCs (positive and negative) and from dynamic frequency shifts (negative for all observed couplings) have to be considered. Whilst the pseudocontact shifts depend on the average positions of 1H and 13C nuclei relative to the lanthanide ions, the RDCs are related to the mobility of nuclei they correspond to. This phenomenon allows for the measurement of the internal mobility of the various groups in the SMMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By pulling and releasing the tension on protein homomers with the Atomic Force Miscroscope (AFM) at different pulling speeds, dwell times and dwell distances, the observed force-response of the protein can be fitted with suitable theoretical models. In this respect we developed mathematical procedures and open-source computer codes for driving such experiments and fitting Bell’s model to experimental protein unfolding forces and protein folding frequencies. We applied the above techniques to the study of proteins GB1 (the B1 IgG-binding domain of protein G from Streptococcus) and I27 (a module of human cardiac titin) in aqueous solutions of protecting osmolytes such as dimethyl sulfoxide (DMSO), glycerol and trimethylamine N-oxide (TMAO). In order to get a molecular understanding of the experimental results we developed an Ising-like model for proteins that incorporates the osmophobic nature of their backbone. The model benefits from analytical thermodynamics and kinetics amenable to Monte-Carlo simulation. The prevailing view used to be that small protecting osmolytes bridge the separating beta-strands of proteins with mechanical resistance, presumably shifting the transition state to significantly higher distances that correlate with the molecular size of the osmolyte molecules. Our experiments showed instead that protecting osmolytes slow down protein unfolding and speed-up protein folding at physiological pH without shifting the protein transition state on the mechanical reaction coordinate. Together with the theoretical results of the Ising-model, our results lend support to the osmophobic theory according to which osmolyte stabilisation is a result of the preferential exclusion of the osmolyte molecules from the protein backbone. The results obtained during this thesis work have markedly improved our understanding of the strategy selected by Nature to strengthen protein stability in hostile environments, shifting the focus from hypothetical protein-osmolyte interactions to the more general mechanism based on the osmophobicity of the protein backbone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled molecular structures were investigated on insulating substrate surfaces using non-contact atomic force microscopy. Both, substrate preparation and molecule deposition, took place under ultra-high vacuum conditions. First, C60 molecules were investigated on the TiO2 (110) surface. This surface exhibits parallel running troughs at the nanometer scale, which strongly steer the assembly of the molecules. This is in contrast to the second investigated surface. The CaF2 (111) surface is atomically flat and the molecular assemblyrnwas observed to be far less affected by the surface. Basically different island structures were observed to what is typically know. Based on extensive experimental studies and theoretical considerations, a comprehensive picture of the processes responsible for the island formation of C60 molecules on this insulating surfaces was developed. The key process for the emergence of the observed novel island structures was made out to be the dewetting of molecules from the substrate. This new knowledge allows to further understand andrnexploit self-assembly techniques in structure fabrication on insulating substrate surfaces. To alter island formation and island structure, C60 molecules were codeposited with second molecule species (PTCDI and SubPc) on the CaF2 (111) surface. Depending on the order of deposition, quiet different structures were observed to arise. Thus, these are the first steps towards more complex functional arrangements consisting of two molecule species on insulating surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergy is a common hypersensitivity disorder that affects 15% to 20% of the population and its prevalence is increasing worldwide. Its severity correlates with the degree of eosinophil infiltration into the conjunctiva, which is mediated by chemokines that stimulate the production of adhesion molecules like intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on the endothelial cell surface. The α4β1 and α4β7 integrins are expressed in eosinophils and contribute to their activation and infiltration in AC through the binding to VCAM-1 or fibronectin, expressed on vascular endothelial cells. Blockade of α4 integrins might be a therapeutical achievement in allergic eye diseases. DS 70, that show an IC50 in the nanomolar range against α4β1 integrin in Jurkat cells and in the eosinophilic cell line EOL-1. This compound was able to prevent cell adhesion to VCAM-1 and FN in vitro. In a scintillation proximity assay DS70 displaced 125I-FN binding to human α4β1 integrin and, in flow cytometry analysis, it antagonized the binding of a primary antibody to α4β1 integrin expressed on the Jurkat cells surface as well. Furthermore, we analysed also its effects on integrin α4β1 signalling. In an vivo model of allergic conjunctivitis, topical DS70 reduced the clinical aspects of EPR (early phase reaction) and LPR (late phase reaction), by reducing clinical score, eosinophil accumulation, mRNA levels of cytochines and chemochines pro-inflammatory and the conjunctival expression of α4 integrin. In conclusion, DS70 seems a novel antiallergic ocular agent that has significant effects on both early and late phases of ocular allergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Point mutations emerge as one of the rate-limiting steps in tumor response to small molecule inhibitors of protein kinases. Here we characterized the response of the MET mutated variants, V1110I, V1238I, V1206L and H1112L to the small molecule SU11274. Our results reveal a distinct inhibition pattern of the four mutations with IC(50) values for autophosphorylation inhibition ranging between 0.15 and 1.5muM. Differences were further seen on the ability of SU11274 to inhibit phosphorylation of downstream MET transducers such as AKT, ERK, PLCgamma and STAT3 and a variety of MET-dependent biological endpoints. In all the assays, H1112L was the most sensitive to SU11274, while V1206L was less affected under the used concentration range. The differences in responses to SU11274 are discussed based on a structural model of the MET kinase domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lung infections by Pseudomonas aeruginosa strains are a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Although there is no clear evidence for a primary defect in the immune system of CF patients, the host is generally unable to clear P. aeruginosa from the airways. PTX3 is a soluble pattern recognition receptor that plays nonredundant roles in the innate immune response to fungi, bacteria, and viruses. In particular, PTX3 deficiency is associated with increased susceptibility to P. aeruginosa lung infection. To address the potential therapeutic effect of PTX3 in P. aeruginosa lung infection, we established persistent and progressive infections in mice with the RP73 clinical strain RP73 isolated from a CF patient and treated them with recombinant human PTX3. The results indicated that PTX3 has a potential therapeutic effect in P. aeruginosa chronic lung infection by reducing lung colonization, proinflammatory cytokine levels (CXCL1, CXCL2, CCL2, and IL-1β), and leukocyte recruitment in the airways. In models of acute infections and in in vitro assays, the prophagocytic effect of PTX3 was maintained in C1q-deficient mice and was lost in C3- and Fc common γ-chain-deficient mice, suggesting that facilitated recognition and phagocytosis of pathogens through the interplay between complement and FcγRs are involved in the therapeutic effect mediated by PTX3. These data suggested that PTX3 is a potential therapeutic tool in chronic P. aeruginosa lung infections, such as those seen in CF patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a combined experimental and theoretical study of the electronic transport through single-molecule junctions based on nitrile-terminated biphenyl derivatives. Using a scanning tunneling microscope-based break-junction technique, we show that the nitrile-terminated compounds give rise to well-defined peaks in the conductance histograms resulting from the high selectivity of the N-Au binding. Ab initio calculations have revealed that the transport takes place through the tail of the LUMO. Furthermore, we have found both theoretically and experimentally that the conductance of the molecular junctions is roughly proportional to the square of the cosine of the torsion angle between the two benzene rings of the biphenyl core, which demonstrates the robustness of this structure-conductance relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Porcine IGF2 and the H19 genes are imprinted. The IGF2 is paternally expressed, while the H19 gene is maternally expressed. Extensive studies in mice established a boundary model indicating that the H19 differentially methylated domain (DMD) controls, upon binding with the CTCF protein, reciprocal imprinting of the IGF2 and the H19 genes. IGF2 transcription is tissue and development specific involving the use of 4 promoters. In the liver of adult Large White boars IGF2 is expressed from both parental alleles, whereas in skeletal muscle and kidney tissues we observed variable relaxation of IGF2 imprinting. We hypothesized that IGF2 expression from both paternal alleles and relaxation of IGF2 imprinting is reflected in differences in DNA methylation patterns at the H19 DMD and IGF2 differentially methylated regions 1 and 2 (DMR1 and DMR2). RESULTS: Bisulfite sequencing analysis did not show any differences in DNA methylation at the three porcine CTCF binding sites in the H19 DMD between liver, muscle and kidney tissues of adult pigs. A DNA methylation analysis using methyl-sensitive restriction endonuclease SacII and 'hot-stop' PCR gave consistent results with those from the bisulfite sequencing analysis. We found that porcine H19 DMD is distinctly differentially methylated, at least for the region formally confirmed by two SNPs, in liver, skeletal muscle and kidney of foetal, newborn and adult pigs, independent of the combined imprinting status of all IGF2 expressed transcripts. DNA methylation at CpG sites in DMR1 of foetal liver was significantly lower than in the adult liver due to the presence of hypomethylated molecules. An allele specific analysis was performed for IGF2 DMR2 using a SNP in the IGF2 3'-UTR. The maternal IGF2 DMR2 of foetal and newborn liver revealed a higher DNA methylation content compared to the respective paternal allele. CONCLUSIONS: Our results indicate that the IGF2 imprinting status is transcript-specific. Biallelic IGF2 expression in adult porcine liver and relaxation of IGF2 imprinting in porcine muscle were a common feature. These results were consistent with the IGF2 promoter P1 usage in adult liver and IGF2 promoter P2, P3 and P4 usages in muscle. The results showed further that bialellic IGF2 expression in liver and relaxation of imprinting in muscle and kidney were not associated with DNA methylation variation at and around at least one CTCF binding site in H19 DMD. The imprinting status in adult liver, muscle and kidney tissues were also not reflected in the methylation patterns of IGF2 DMRs 1 and 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug release from a fluid-contacting biomaterial is simulated using a microfluidic device with channels defined by solute-loaded hydrogel. In order to mimic a drug delivery device, a solution of poly(ethylene glycol) diacrylate (PEG-DA), solute, and photoinitiator is cured inside a microfluidic device with a channel through the center ofthe hydrogel. As water is pumped through the channel, solute diffuses out of the hydrogel and into the water. Channel sizes within the devices range from 300 µm to 1000 µm to simulate vessels within the body. The properties of the PEG hydrogel were characterizedby the extent of crosslinking, the swelling ratio, and the mesh size of the gel. The structure of the hydrogel was related to the UV exposure dosage and the initial water and solute content in the PEG-DA solution.