924 resultados para mobile device
Resumo:
Drowsy driving impairs motorists’ ability to operate vehicles safely, endangering both the drivers and other people on the road. The purpose of the project is to find the most effective wearable device to detect drowsiness. Existing research has demonstrated several options for drowsiness detection, such as electroencephalogram (EEG) brain wave measurement, eye tracking, head motions, and lane deviations. However, there are no detailed trade-off analyses for the cost, accuracy, detection time, and ergonomics of these methods. We chose to use two different EEG headsets: NeuroSky Mindwave Mobile (single-electrode) and Emotiv EPOC (14- electrode). We also tested a camera and gyroscope-accelerometer device. We can successfully determine drowsiness after five minutes of training using both single and multi-electrode EEGs. Devices were evaluated using the following criteria: time needed to achieve accurate reading, accuracy of prediction, rate of false positives vs. false negatives, and ergonomics and portability. This research will help improve detection devices, and reduce the number of future accidents due to drowsy driving.
Resumo:
Nowadays there is almost no crime committed without a trace of digital evidence, and since the advanced functionality of mobile devices today can be exploited to assist in crime, the need for mobile forensics is imperative. Many of the mobile applications available today, including internet browsers, will request the user’s permission to access their current location when in use. This geolocation data is subsequently stored and managed by that application's underlying database files. If recovered from a device during a forensic investigation, such GPS evidence and track points could hold major evidentiary value for a case. The aim of this paper is to examine and compare to what extent geolocation data is available from the iOS and Android operating systems. We focus particularly on geolocation data recovered from internet browsing applications, comparing the native Safari and Browser apps with Google Chrome, downloaded on to both platforms. All browsers were used over a period of several days at various locations to generate comparable test data for analysis. Results show considerable differences not only in the storage locations and formats, but also in the amount of geolocation data stored by different browsers and on different operating systems.
Resumo:
110 p.
Resumo:
Home Automation holds the potential of realizing cost savings for end users while reducing the carbon footprint of domestic energy consumption. Yet, adoption is still very low. High cost of vendor-supplied home automation systems is a major prohibiting factor. Open source systems such as FHEM, Domoticz, OpenHAB etc. are a cheaper alternative and can drive the adoption of home automation. Moreover, they have the advantage of not being limited to a single vendor or communication technology which gives end users flexibility in the choice of devices to include in their installation. However, interaction with devices having diverse communication technologies can be inconvenient for users thus limiting the utility they derive from it. For application developers, creating applications which interact with the several technologies in the home automation systems is not a consistent process. Hence, there is the need for a common description mechanism that makes interaction smooth for end users and which enables application developers to make home automation applications in a consistent and uniform way. This thesis proposes such a description mechanism within the context of an open source home automation system – FHEM, together with a system concept for its application. A mobile application was developed as a proof of concept of the proposed description mechanism and the results of the implementation are reflected upon.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
Interactions in mobile devices normally happen in an explicit manner, which means that they are initiated by the users. Yet, users are typically unaware that they also interact implicitly with their devices. For instance, our hand pose changes naturally when we type text messages. Whilst the touchscreen captures finger touches, hand movements during this interaction however are unused. If this implicit hand movement is observed, it can be used as additional information to support or to enhance the users’ text entry experience. This thesis investigates how implicit sensing can be used to improve existing, standard interaction technique qualities. In particular, this thesis looks into enhancing front-of-device interaction through back-of-device and hand movement implicit sensing. We propose the investigation through machine learning techniques. We look into problems on how sensor data via implicit sensing can be used to predict a certain aspect of an interaction. For instance, one of the questions that this thesis attempts to answer is whether hand movement during a touch targeting task correlates with the touch position. This is a complex relationship to understand but can be best explained through machine learning. Using machine learning as a tool, such correlation can be measured, quantified, understood and used to make predictions on future touch position. Furthermore, this thesis also evaluates the predictive power of the sensor data. We show this through a number of studies. In Chapter 5 we show that probabilistic modelling of sensor inputs and recorded touch locations can be used to predict the general area of future touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit sensing from general mobile interactions is user-specific. This can be used to identify users implicitly. In Chapter 6, we also show that touch interaction errors can be detected from sensor data. In our experiment, we show that there are sufficient distinguishable patterns between normal interaction signals and signals that are strongly correlated with interaction error. In all studies, we show that performance gain can be achieved by combining sensor inputs.
Resumo:
This paper reports on a study that investigates the emotions elicited from appraising SMS-based mobile marketing (m-marketing) communications under three marketing conditions: product consistency, incentives and permission giving. Results from the experimental design show that appraising m-marketing communications elicits both single emotions and mixed emotions; that is, a mixture of positive and negative emotions in the same response. Additionally, the results show that the influence of specific marketing conditions may increase or reduce the intensity of the emotions elicited. This study contributes to marketing practice by examining consumer appraisals of m-marketing communications under different combinations of marketing conditions. The results provide insights into which emotions are likely to be elicited as a result, and how a specific marketing condition might influence their levels of intensity. The study contributes to marketing theory also through combining appraisal theory with Richins (1997) consumption emotion set.