860 resultados para mitochondrial alterations
Resumo:
OBJECTIVE: Detect of cardiac alterations in children with AIDS and compare their evolution with the administration of only one anti-retroviral and the recent cases who received drugs in combination. METHODS: We prospectively studied 47 children in 3 groups: group 1, 20 cases treated only with zidovudine; group 2, 10 patients treated initially with zidovudine and later with a combination of drugs and in group 3, 17 patients, who receiced two or three since the beginning. In all patients it was done chest X-ray, EKG and echocardiography every 6 months and after death complete pathological study. RESULTS: Among the 45 patients cases 26 (57%) were index cases. Malnutrition, diarrhea tachycardia, signs of congestive heart failure, pericardial effusion, abnormal ventricular repolarization and arrhythmias were more frequent in group 1. Echocardiographic abnormalities were present in 10 (50%) children of group 1. They were less frequent in the others two groups. In regard to the outcome in group 1, two patients had worsening of sings of cardiomyopaty and 4 died. Cardiac dysfunction in all cases of group 2 and 3 improved with the medication. CONCLUSION:- The children who received combination and their cardiac alterations had more favorable outcome than those who received only one drug.
Resumo:
El láser de baja y media energía y la magnetoterapia son utilizados en desórdenes osteomioarticulares por sus efectos analgésico, antiinflamatorio y trófico, entre los más destacados. Sin embargo, son insuficientes las investigaciones sobre su mecanismo de acción y antecedentes científicos que avalen sus efectos. Es por ello, que la determinación de acontecimientos celulares y moleculares que ocurren durante la interacción de estos tipos de energía con el sistema muscular, sería relevante para el conocimiento y optimización de tales terapias en las ciencias biomédicas. En las miopatías inflamatorias idiopáticas, se encuentra afectada la estructura, morfología y bioquímica del tejido muscular. La energía que éste requiere para el normal funcionamiento es generada en la mitocondria. Esta organela también es la responsable de la generación de especies oxidantes provocando estrés oxidativo y el inicio de los procesos de apoptosis. Por lo antes dicho, consideramos que la determinación de los biomarcadores inflamatorios asociados a estrés oxidativo, realizando el análisis histomorfométrico ultraestructural y valorando la actividad de los complejos enzimáticos mitocondriales, permitiría una evaluación de la acción terapéutica del láser y la magnetoterapia en un modelo experimental de miopatía. Para ello se propone evaluar el efecto de la magnetoterapia y del láser de baja energía (He-Ne y As.Ga) en miopatía experimental determinando indicadores inflamatorios asociados a estrés oxidativo, análisis histomorfométrico y valoración de la actividad enzimática mitocondrial. Específicamente: -Determinar indicadores inflamatorios y de estrés oxidativo: Oxido Nítrico, Grupos carbonilos, L-citrulina, Fibrinógeno, Superóxido dismutasa, Glutation peroxidasa y Catalasa por espectrofotometría. -Identificar los cambios anatomopatológicos del músculo esquelético por microscopía óptica (MO): cuantificación del infiltrado inflamatorio; MO de alta resolución (MOAR) y por microscopía electrónica: histomorfometría de la ultraestructura miofibrilar y mitocondrial. -Valorar las actividades enzimáticas de la citrato sintasa y de los complejos: I (NADH-ubiquinona reductasa), II (succinato-ubiquinona-reductasa) III (ubiquinona-citocromo c-reductasa) y IV (citocromo c-oxidasa); en mitocondrias de tejido muscular por espectrofotometría. -Evaluar la actividad apoptótica en las fibras musculares de los diferentes grupos por ténica de T.U.N.E.L. Las mediciones mitocondriales (por ME) y de infiltrado inflamatorio (por MO) se realizarán en un total de 5 fotos de aumentos similares en forma aleatoria por grupo estudiado (n=10). Los cambios estructurales observados se analizarán en el programa Axiovision 4.8, para cuantificar el área total ocupada, número total y grado de alteración de las mitocondrias y el porcentaje de infiltrado inflamatorio determinando el grado de inflamación. Los resultados de los datos cuantitativos se analizarán aplicando ANAVA (test de Fisher para comparaciones múltiples); y para los datos categóricos se utilizará Chi cuadrado (test de Pearson), estableciéndose un nivel de significación de p < 0.05 para todos los casos. Importancia del Proyecto: La salud y el bienestar del hombre son los logros perseguidos por las ciencias de la salud. La obtención de terapias curativas o paliativas con un mínimo de efectos colaterales para el enfermo se incluye en estos logros. Por esto y todo lo anteriormente expuesto es que consideramos de gran importancia poder esclarecer desde las ciencias básicas los efectos celulares y moleculares en modelos experimentales la acción de la terapia con láser y magnetoterapia para una aplicación clínica con base científica en todas las áreas de las Ciencias Médicas. In the idiopathic inflammatory myopathies, is affected the structure, morphology and biochemistry of muscle tissue. The mitochondria is responsible for the generation of oxidizing species leading to oxidative stress and the beginning of the process of apoptosis. As said before, we consider the determination of inflammatory biomarkers related to oxidative stress, by ultrastructural morphometric analysis and assessing the activity of mitochondrial enzyme complexes, permit an evaluation of the therapeutic action of laser and magnetic therapy in an experimental model myopathy. We propose to evaluate the effect of the treatment identifying indicators in experimental inflammatory myopathy associated with oxidative stress, histomorphometric analysis and assessment of mitochondrial enzyme activity. Specifically -determining: Nitric oxide, carbonyl groups, L-citrulline, fibrinogen, superoxide dismutase, glutathione peroxidase and catalase by spectrophotometry. -Identify the pathological changes in skeletal muscle by optical microscopy (OM): quantification of the inflammatory infiltrate, OM high resolution (MOAR) and electron microscopy, histomorphometry of myofibrillar and mitochondrial ultrastructure. -Evaluate the enzymatic activity of citrate synthase and complexes: I, II, III and IV in mitochondria muscle tissue by spectrophotometry. -Evaluate apoptotic activity in muscle fibers by TUNEL technique of Mitochondrial measurements and inflammatory infiltration (by OM) was performed in a total of 5 photos of similar increases in random by the study group (n = 10). The structural changes observed are discussed in the program Axiovision 4.8, to quantify number, degree of alteration of mitochondria and the percentage of inflammatory infiltrate determining the degree of inflammation. The results of the quantitative data were analyzed using ANOVA (Fisher test), and categorical data with Chi-square (Pearson test), establishing a significance level of p <0.05.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2008
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015
Resumo:
We present a description of osteological alterations observed in the tucuxi, Sotalia fluviatilis (Gervais, 1853) from a sample of 43 specimens. Fractures were the most frequent alterations in the sample (16%), occurring in various regions of the skeleton such as the ribs, hyoid apparatus, transverse and neural processes of vertebrae and scapula. We observed three individuals with ankylosis between the cervical vertebrae and two individuals with morphological changes (cranio-caudally elongated hemal arch and flattened cranial margin of the scapula). The only observed pathology was a case of osteomyelitis in the left dentary, which caused the loss of teeth, deformation of the associated alveoli and the formation of a medial fistula (lingual) for drainage of purulent material. This represents the first record of osteomyelitis in S. fluviatilis.
Resumo:
Ultrastructural morphology and ATPase specific activities of mitochondria isolated from 1-celled fertilized egg, 10-day embryo, 21-day infective larvae and adult body wall muscle of Ascaris suum and rat liver were determined and compared. Although cristae of both muscle and egg mitochondria contained numerous elementary particles with head pieces of conventional diameter (85 A), each muscle mitochondrion contained relatively few, short cristae with a diminished frequency of elementary particles and associated ATPase activity. These morphological relationships are related to the previous conclusion that the transition from an aerobic to an essentially anaerobic metabolism is intimately associated with the mitochondrion and is a normal and mandatory feature of development.
Resumo:
C3H mice chronically infected with Leishmania m. mexicana, and in some groups treated with BCG or levamisole, presented atypical epidermal alterations, including pseudoepitheliomatous hyperplasia, hyperkeratosis and dysplasia. These alterations increased in frequency and intensity during the course of infection, but were not related to lesion size or tissue parasite load. Age matched normal, BCG and levamisole treated control mice, examined simultaneously, did not show epidermal modifications. In infected mice the dermis and hypodermis presented an inflammatory infiltrate of histiocytes, lymphocytes and plasma cells, accompanied at times by neutrophils and eosinophils, which did not vary with duration of infection.
Resumo:
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Resumo:
A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.
Resumo:
The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.
Resumo:
Mitochondrial (M) and lipid droplet (L) volume density (vd) are often used in exercise research. Vd is the volume of muscle occupied by M and L. The means of calculating these percents are accomplished by applying a grid to a 2D image taken with transmission electron microscopy; however, it is not known which grid best predicts these values. PURPOSE: To determine the grid with the least variability of Mvd and Lvd in human skeletal muscle. METHODS: Muscle biopsies were taken from vastus lateralis of 10 healthy adults, trained (N=6) and untrained (N=4). Samples of 5-10mg were fixed in 2.5% glutaraldehyde and embedded in EPON. Longitudinal sections of 60 nm were cut and 20 images were taken at random at 33,000x magnification. Vd was calculated as the number of times M or L touched two intersecting grid lines (called a point) divided by the total number of points using 3 different sizes of grids with squares of 1000x1000nm sides (corresponding to 1µm2), 500x500nm (0.25µm2) and 250x250nm (0.0625µm2). Statistics included coefficient of variation (CV), 1 way-BS ANOVA and spearman correlations. RESULTS: Mean age was 67 ± 4 yo, mean VO2peak 2.29 ± 0.70 L/min and mean BMI 25.1 ± 3.7 kg/m2. Mean Mvd was 6.39% ± 0.71 for the 1000nm squares, 6.01% ± 0.70 for the 500nm and 6.37% ± 0.80 for the 250nm. Lvd was 1.28% ± 0.03 for the 1000nm, 1.41% ± 0.02 for the 500nm and 1.38% ± 0.02 for the 250nm. The mean CV of the three grids was 6.65% ±1.15 for Mvd with no significant differences between grids (P>0.05). Mean CV for Lvd was 13.83% ± 3.51, with a significant difference between the 1000nm squares and the two other grids (P<0.05). The 500nm squares grid showed the least variability between subjects. Mvd showed a positive correlation with VO2peak (r = 0.89, p < 0.05) but not with weight, height, or age. No correlations were found with Lvd. CONCLUSION: Different size grids have different variability in assessing skeletal muscle Mvd and Lvd. The grid size of 500x500nm (240 points) was more reliable than 1000x1000nm (56 points). 250x250nm (1023 points) did not show better reliability compared with the 500x500nm, but was more time consuming. Thus, choosing a grid with square size of 500x500nm seems the best option. This is particularly relevant as most grids used in the literature are either 100 points or 400 points without clear information on their square size.