973 resultados para microtensile bond strength test
Resumo:
Statement of problem. Two problems found in prostheses with soft liners are bond failure to the acrylic resin base and loss of elasticity due to material aging.Purpose. This in vitro study evaluated the effect of thermocycling on the bond strength and elasticity of 4 long-term soft denture liners to acrylic resin bases.Material and methods. Four soft lining materials (Molloplast-B, Flexor, Permasoft, and Pro Tech) and 2 acrylic resins (Classico, and Lucitone 199) were processed for testing according to manufacturers' instructions. Twenty rectangular specimens (10 X 10-mm(2) cross-sectional area) and twenty cylinder specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Samples were divided into a test group that was thermocycled 3000 times and a control group that was stored for 24 hours in water at 37degreesC. Mean bond strength, expressed in megapascals (Wa), was determined in the tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Elasticity, expressed as percent of permanent deformation, was calculated with an instrument for measuring permanent deformation described in ADA/ANSI specification 18. Data from both tests were examined with 1-way analysis of variance and a Tukey test, with calculation of a Scheffe interval at a 95% confidence level.Results. In the tensile test under control conditions, Molloplast-B (1.51 +/- 0.28 MPa [mean SD]) and Pro Tech (1.44 +/- 0.27 MPa) liners had higher bond strength values than the others (P < .05). With regard to the permanent deformation test, the lowest values were observed for Molloplast-B (0.48% +/- 0.19%) and Flexor (0.44% +/- 0.14%) (P < .05). Under thermocycling conditions, the highest bond strength occurred with Molloplast-B (1.37 +/- 0.24 MPa) (P < .05) With regard to the deformation test, Flexor (0.46% +/- 0.13%) and Molloplast-B (0.44% +/- 0.17%) liners had lower deformation values than the others (P < .05).Conclusion. The results of this in vitro study indicated that bond strength and permanent deformity values of the 4 soft denture liners tested varied according to their chemical composition. These tests are not completely valid for application to dental restorations because the forces they encounter are more closely related to shear and tear. However, the above protocol serves as a good method of investigation to evaluate differences between thermocycled and control groups.
Resumo:
Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.
Resumo:
This study evaluated the effect of mechanical cycling on the bond strength of fiber posts bonded to root dentin. The hypotheses examined were that bond strength is not changed after fatigue testing and bond strength does not present vast variations according to the type of fiber post. Sixty crownless, single-rooted human teeth were endodontically treated, with the space prepared at 12 mm. Thirty specimens received a quartz fiber post (Q-FRC (DT Light-Post), and the remaining 30 specimens received a glass fiber post (G-FRC) (FRC Postec Plus). All the posts were resin luted (All Bond+Duolink), and each specimen was embedded in a cylinder with epoxy resin. The specimens were divided into six groups: G1-Q-FRC+no cycling, G2- Q-FRC+20,000 cycles (load: 50N, angle of 45 degrees; frequency: 8Hz); G3- Q-FRC+2,000,000 cycles; G4- G-FRC+no cycling; G5- G-FRC+20,000 cycles; G6- GFRC+2,000,000 cycles. The specimens were cut perpendicular to their long axis, forming 2-mm thick disc-samples, which were submitted to the push-out test. ANOVA (alpha=.05) revealed that: (a) QFRC (7.1 +/- 2.2MPa) and G-FRC (6.9 +/- 2.1MPa) were statistically similar (p=0.665); (b) the no cycling groups (7.0 +/- 2.4MPa), 20,000 cycles groups (7.0 +/- 2.1MPa) and 2,000,000 cycles groups (7.0 +/- 2.0MPa) were statistically similar (p=0.996). It concluded that mechanical cycling did not affect the bond strength of two fiber posts bonded to dentin.
Resumo:
The aim of this study was to evaluate the shear bond strength of brackets bonded with different restorative systems and compare it with that afforded by an established orthodontic bonding system. Seventy human bicuspids were used, divided into five different groups with 14 teeth each. Whereas a specific orthodontic bonding resin (Transbond (TM) XT) was used in the control group, the restorative systems Charisma, Tetric Ceram, TPH Spectrum and Z100 were used in the other four groups. Seven days after bonding the brackets to the samples, shear forces were applied under pressure in a universal testing machine. The data collected was evaluated using the ANOVA test and, when a difference was identified, the Tukey test was applied. A 5% level of significance was adopted. The mean results of the shear bond strength tests were as follows: Group 1 (Charisma), 14.98 MPa; Group 2 (Tetric Ceram), 15.16 MPa; Group 3 (TPH), 17.70 MPa; Group 4 (Z100), 13.91 MPa; and Group 5 or control group (Transbond (TM) XT), 17.15 MPa. No statistically significant difference was found among the groups. It was concluded that all tested resins have sufficient bond strength to be recommended for bonding orthodontic brackets.
Resumo:
STATEMENT OF PROBLEM: Because water sorption of autopolymerizing acrylic reline resins is accompanied by volumetric change, it is a physical property of importance. As residual monomer leaches into the oral fluids and causes tissue irritation, low solubility of these resins is desired. Another requirement is a satisfactory bond between the autopolymerizing acrylic resins and the denture base acrylic resin. PURPOSE: This study compared the water sorption, solubility, and the transverse bond strength of 2 autopolymerizing acrylic resins (Duraliner II and Kooliner) and 1 heat-polymerizing acrylic resin (Lucitone 550). MATERIAL AND METHODS: The water sorption and solubility test was performed as per International Standards Organization Specification No. 1567 for denture base polymers. Bond strengths between the autopolymerizing acrylic resins and the heat-polymerizing acrylic resin were determine with a 3-point loading test made on specimens immersed in distilled water at 37 degrees C for 50 hours and for 30 days. Visual inspection determined whether failures were adhesive or cohesive. RESULTS: Duraliner II acrylic resin showed significantly lower water sorption than Kooliner and Lucitone 550 acrylic resins. No difference was noted in the solubility of all materials. Kooliner acrylic resin demonstrated significantly lower transverse bond strength to denture base acrylic resin and failed adhesively. The failures seen with Duraliner II acrylic resin were primarily cohesive in nature. CONCLUSIONS: Autopolymerizing acrylic reline resins met water sorption and solubility requirements. However, Kooliner acrylic resin demonstrated significantly lower bond strength to denture base acrylic resin.
Resumo:
Purpose: This investigation studied the effects of 3 surface treatments on the shear bond strength of a light-activated composite resin bonded to acrylic resin denture teeth. Materials and Methods: The occlusal surfaces of 30 acrylic resin denture teeth were ground flat with up to 400-grit silicon carbide paper. Three different surface treatments were evaluated: (1) the flat ground surfaces were primed with methyl methacrylate (MMA) monomer for 180 seconds; (2) light-cured adhesive resin was applied and light polymerized according to the manufacturer's instructions; and (3) treatment 1 followed by treatment 2. The composite resin was packed on the prepared surfaces using a split mold. The interface between tooth and composite was loaded at a cross-head speed of 0.5 mm/min until failure. Results: Analysis of variance indicated significant differences between the surface treatments. Results of mean comparisons using Tukey's test showed that significantly higher shear bond strengths were developed by bonding composite resin to the surfaces that were previously treated with MMA and then with the bonding agent when compared to the other treatments. Conclusion: Combined surface treatment of MMA monomer followed by application of light-cured adhesive resin provided the highest shear bond strength between composite resin and acrylic resin denture teeth.
Resumo:
Purpose: The objective of this study was to verify the effect of cyclic compressive loading on the shear bond strength of an adhesive system following collagen removal. Materials and Methods: Sixty bovine teeth were divided into 4 groups based on the adhesive procedure used: groups 1 and 2 - etching with 35% phosphoric acid and application of the Single Bond adhesive system; groups 3 and 4 - after etching, a 10% sodium hypochlorite solution was applied for 1 min before the application of the adhesive. In all the specimens, a Z100 resin cylinder was built up over the bond area. Groups 2 and 4 were submitted to 500,000 cycles with a load of 100 N. Results: The mean values for the shear bond test (MPa) were: group 1: 7.37 ± 1.15; group 2: 5.72 ± 1.66; group 3: 5.95 ± 1.21; group 4: 3.66 ± 1.12. There was no difference between groups 1 and 2 (p > 0.01). Between groups 1 and 3, 2 and 4, and 3 and 4 there was a significant difference (p < 0.01). The majority of the specimens demonstrated an adhesive failure. Conclusion: The application of sodium hypochlorite on dentin decreased the values of shear bond strength, as did the load cycling in the group treated with sodium hypochlorite.
Resumo:
Objectives: The purpose of the this study was to evaluate the influence of thermocycling on shear bond strength on bovine enamel and dentin surfaces of different adhesive systems. Methods: Thirty sound bovine incisors were sectioned in mesiodistal and inciso-cervical direction obtaining 60 incisal surfaces (enamel) and 60 cervical surfaces (dentin). Specimens were randomly assigned to 3 groups of equal size (n = 40), according to the adhesive system used: I-Single Bond; II-Prime & Bond NT/NRC; III-One Coat Bond. After 24-h storage in distilled water at 37 o C, each main group was divided into two subgroups: A- specimens tested after 24 h storage in distilled water at 37°C; B - specimens submitted to thermocycling (500 cycles). Shear bond strength tests were performed. Data were submitted to ANOVA and Tukey test. Results: Means (MPa) of different groups were: I-AE-16.96, AD-17.46; BE-21.60, BD-12.79; II-AE-17.20, AD-11.93; BE-20.67, BD-13.94; III-AE-25.66, AD-17.53; BE-24.20, BD-19.38. Significance: Thermocycling did not influence significantly the shear bond strength of the tested adhesive systems; enamel was the dental substrate that showed larger adhesive strength; One Coat Bond system showed the best adhesive strength averages regardless of substrate or thermocycling. © 2005 Springer Science + Business Media, Inc.
Resumo:
The aim of this study was to evaluate the effects of dentin surface treatments on the tensile bond strength (TBS) of the self-etching primer Clearfil SE Bond (CSE) and the one-step self-etching One-Up Bond F (OUB). The exposed flat dentin surfaces of twenty-four sound third molars were prepared with diamond bur at high-speed, carbide bur at low-speed or wet ground with #600 grit SiC paper. The adhesive systems were applied to the dentin surfaces and light-cured according to the manufacturers' instructions. A 6-mm high composite crown was incrementally built-up and each increment was light-cured for 40 seconds. After being stored in water (37°C/24 h), the samples were serially sectioned parallel to the long axis, forming beams (n = 20) with a cross-sectional area of approximately 0.8 mm 2. The specimens were tested in a Universal Testing Machine at 0.5 mm/min. The cross-sectional area was measured and the results (MPa) were analyzed by two-way ANOVA and Tukey Test (p < 0.05). Overall, the groups treated with CSE exhibited the highest TBS for all surface treatments. Dentin surfaces prepared with carbide bur at low speed reduced TBS in the CSE group; however, OUB was not affected by surface treatments. The effect of surface abrasive methods on TBS was material-dependent.
Resumo:
Purpose: This study assessed the shear bond strength of 4 hard chairside reline resins (Kooliner, Tokuso Rebase Fast, Duraliner II, Ufi Gel Hard) to a rapid polymerizing denture base resin (QC-20) processed using 2 polymerization cycles (A or B), before and after thermal cycling. Materials and Methods: Cylinders (3.5 mm x 5.0 mm) of the reline resins were bonded to cylinders of QC-20 polymerized using cycle A (boiling water-20 minutes) or B (boiling water; remove heat-20 minutes; boiling water-20 minutes). For each reline resin/polymerization cycle combination, 10 specimens (groups CAt e CBt) were thermally cycled (5 and 55°C; dwell time 30 seconds; 2,000 cycles); the other 10 were tested without thermal cycling (groups CAwt ad CBwt). Shear bond tests (0.5 mm/min) were performed on the specimens and the failure mode was assessed. Data were analyzed by 3-way ANOVA and Newman-Keuls post-hoc test (α=.05). Results: QC-20 resin demonstrated the lowest bond strengths among the reline materials (P<.05) and mainly failed cohesively. Overall, the bond strength of the hard chairside reline resins were similar (10.09±1.40 to 15.17±1.73 MPa) and most of the failures were adhesive/cohesive (mixed mode). However, Ufi Gel Hard bonded to QC-20 polymerized using cycle A and not thermally cycled showed the highest bond strength (P<.001). When Tokuso Rebase Fast and Duraliner II were bonded to QC-20 resin polymerized using cycle A, the bond strength was increased (P=.043) after thermal cycling. Conclusions: QC-20 displayed the lowest bond strength values in all groups. In general, the bond strengths of the hard chairside reline resins were comparable and not affected by polymerization cycle of QC-20 resin and thermal cycling.
Resumo:
The use of acid etchants to produce surface demineralization and collagen network exposure, allowing adhesive monomers interdiffusion and consequently the formation of a hybrid layer, has been considered the most efficient mechanism of dentin bonding. The aim of this study was to compare the tensile bond strength to dentin of three adhesive systems, two self-etching ones (Clearfil SE Bond - CSEB and One Up Bond F - OUBF) and one total-etching one (Single Bond - SB), under three dentinal substrate conditions (wet, dry and re-wet). Ninety human, freshly extracted third molars were sectioned at the occlusal surface to remove enamel and to form a flat dentin wall. The specimens were restored with composite resin (Filtek Z250) and submitted to tensile bond strength testing (TBS) in an MTS 810. The data were submitted to two-way ANOVA and Tukey's test (p = 0.05). Wet dentin presented the highest TBS values for SB and CSEB. Dry dentin and re-wet produced significantly lower TBS values when using SB. OUBF was not affected by the different conditions of the dentin substrate, producing similar TBS values regardless of the surface pretreatments.
Resumo:
Purpose: The effect of water immersion on the shear bond strength (SBS) between 1 heat-polymerizing acrylic resin (Lucitone 550-L) and 4 autopolymerizing reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) was investigated. Specimens relined with resin L were also evaluated. Materials and Methods: One hundred sixty cylinders (20 × 20 mm) of L denture base resin were processed, and the reline resins were packed on the prepared bonding surfaces using a split-mold (3.5 × 5.0 mm). Shear tests (0.5 mm/min) were performed on the specimens (n = 8) after polymerization (control), and after immersion in water at 37°C for 7, 90, and 180 days. All fractured surfaces were examined by scanning electron microscopy (SEM) to calculate the percentage of cohesive fracture (PCF). Shear data were analyzed with 2-way ANOVA and Tukey's test; Kruskall-Wallis test was used to analyze PCF data (α = 0.05). Results: After 90 days water immersion, an increase in the mean SBS was observed for U (11.13 to 16.53 MPa; p < 0.001) and T (9.08 to 13.24 MPa, p = 0.035), whereas resin L showed a decrease (21.74 MPa to 14.96 MPa; p < 0.001). The SBS of resins K (8.44 MPa) and N (7.98 MPa) remained unaffected. The mean PCF was lower than 32.6% for K, N, and T, and higher than 65.6% for U and L. Conclusions: Long-term water immersion did not adversely affect the bond of materials K, N, T, and U and decreased the values of resin L. Materials L and U failed cohesively, and K, N, and T failed adhesively. © 2007 by The American College of Prosthodontists.
Resumo:
Several studies have reported the benefits of sonic and/or ultrasonic instrumentation for root debridement, with most of them focusing on changes in periodontal clinical parameters. The present study investigated possible alterations in the tensile bond strength of crowns cemented with zinc phosphate cement to natural teeth after ultrasonic instrumentation. Forty recently extracted intact human third molars were selected, cleaned and stored in physiologic serum at 4°C. They received standard preparations, at a 16° convergence angle, and AgPd alloy crowns. The crowns were cemented with zinc phosphate cement and then divided into four groups of 10 teeth each. Each group was then subdivided into two subgroups, with one of the subgroups being submitted to 5,000 thermal cycles ranging from 55 ± 2 to 5 ± 2°C, while the other was not. Each group was submitted to ultrasonic instrumentation for different periods of time: group 1 - 0 min (control), group 2 - 5 min, group 3 - 10 min, and group 4 - 15 min. Tensile bond strength tests were performed with an Instron testing machine (model 4310). Statistical analysis was performed using ANOVA and Tukey's test at the 5% level of significance. A significant reduction in the tensile bond strength of crowns cemented with zinc phosphate and submitted to thermal cycles was observed at 15 min (196.75 N versus 0 min = 452.01 N, 5 min = 444.23 N and 10 min = 470.85 N). Thermal cycling and ultrasonic instrumentation for 15 min caused a significant reduction in tensile bond strength (p < .05).
Resumo:
This study evaluated bond strength to dentin as a result of storage time for conventional adhesive systems (with or without collagen) that had been deproteinized with 10% sodium hypochlorite (NaOCl). For this study, 72 human molars were sectioned in a mesiodistal axial plane and embedded in acrylic resin; at that point, the vestibular and lingual surfaces were worn down with abrasive paper. Acid etching was performed for 15 seconds (using 37% phosphoric acid) and the specimens were divided into 12 groups (n = 6), depending on the adhesive system used, the dentin treatment performed, and the length of evaluation (24 hours or six months). A resin composite was inserted over the prepared area with the aid of a metal matrix. Following a mechanical shear test, fractured surfaces were analyzed by stereomicroscope and the data were submitted to ANOVA and Tukey's test. It was concluded that the dentin deproteinization treatment with 10% NaOCI improved the bond strength in five of the six groups. The bond strength after 24 hours was significantly higher than the bond strength measured after six months. Of the three adhesive systems tested in this study, DenTASTIC UNO demonstrated the lowest bond strength.
Resumo:
This study subjected two self-adhesive resin cements and two conventional resin cements to dry and aging conditions, to compare their microtensile bond strengths (MTBS) to dentin. Using four different luting systems (n = 10), 40 composite resin blocks (each 5x5x4 mm) were cemented to flat human crown dentin surfaces. The specimens were stored in water for 24 hours (37°C), at which point each specimen was sectioned along two axes to obtain beams that were divided randomly into two groups: dry samples, which were tested immediately, and samples that were subjected to accelerated aging conditions (12, 000 thermocycles followed by storage for 150 days). The μTBS results were affected significantly by the luting system used (P < 40001). Only the μTBS of Rely-X Unicem was reduced significantly after aging; the μTBS remained stable or increased for the other self-adhesive resin cement and the two conventional cements.