879 resultados para microstructures


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antiferroelectric lead zirconate thin films were deposited using KrF (248 nm) excimer laser ablation technique. Utilization of antiferroelectric materials is proposed in high charge storage capacitors and microelectromechanical (MEMs) devices. The antiferroelectric nature of lead zirconate thin films was confirmed by the presence of double hysteresis behavior in polarization versus applied field response. By controlling the processing parameters, two types of microstructures evolved, namely columnar (or in-situ) and multi-grained (or ex-situ) in PZ thin films. The dielectric and electrical properties of the lead zirconate thin films were studied with respect to the processing parameters. Analysis on charge transport mechanism, using space charge limited conduction phenomenon, showed the presence of both shallow and deep trap sites in the PZ thin films. The estimated shallow trap energies were 0.448 and 0.491 eV for in-situ and ex-situ films, with respective concentrations of approximate to 7.9 x 10(18)/cc and approximate to 2.97 x 10(18)/cc. The deep trap energies with concentrations were 1.83 eV with 1.4 x 10(16)/cc for ex-situ and 1.76 eV with 3.8 x 10(16)/cc for in-situ PZ thin films, respectively. These activation energies were found to be consistent with the analysis from Arrhenius plots of de current densities. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microchips for use in biomolecular analysis show a lot of promise for medical diagnostics and biomedical basic research. Among the potential advantages are more sensitive and faster analyses as well as reduced cost and sample consumption. Due to scaling laws, the surface are to volume ratios of microfluidic chips is very high. Because of this, tailoring the surface properties and surface functionalization are very important technical issues for microchip development. This thesis studies two different types of functional surfaces, surfaces for open surface capillary microfluidics and surfaces for surface assisted laser desorption ionization mass spectrometry, and combinations thereof. Open surface capillary microfluidics can be used to transport and control liquid samples on easily accessible open surfaces simply based on surface forces, without any connections to pumps or electrical power sources. Capillary filling of open partially wetting grooves is shown to be possible with certain geometries, aspect ratios and contact angles, and a theoretical model is developed to identify complete channel filling domains, as well as partial filling domains. On the other hand, partially wetting surfaces with triangular microstructures can be used for achieving directional wetting, where the water droplets do not spread isotropically, but instead only spread to a predetermined sector. Furthermore, by patterning completely wetting and superhydrophobic areas on the same surface, complex droplet shapes are achieved, as the water stretches to make contact with the wetting surface, but does not enter into the superhydrophobic domains. Surfaces for surface assisted laser desorption ionization mass spectrometry are developed by applying various active thin film coatings on multiple substrates, in order to separate surface and bulk effects. Clear differences are observed between both surface and substrate layers. The best performance surfaces consisted of amorphous silicon coating and an inorganic-organic hybrid substrate, with nanopillars and nanopores. These surfaces are used for matrix-free ionization of drugs, peptides and proteins, and for some analytes, the detection limits were in the high attomoles. Microfluidics and laser desorption ionization surfaces are combined on a functionalized drying platforms, where the surface is used to control the shape of the deposited analyte droplet, and the shape of the initial analyte droplet affects the dried droplet solute deposition pattern. The deposited droplets can then directly detected by mass spectrometry. Utilizing this approach, results of analyte concentration, splitting and separation are demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced. As the first step, the alloy was electromagnetically stirred and solidified to produce a billet with non-dendritic microstructure. The microstructure depended on several process parameters such as stirring intensity, stirring frequency, cooling rate, and melt initial superheat. Through a series of computational studies and controlled experiments, a set of process parameters were identified to produce the best microstructures. Reheating of a billet with non-dendritic microstructure to a semisolid temperature was the next step for thixo-casting of the components. The reheating process was characterized for various reheating cycles using a vertical-type reheating machine. The induction heating cycle was optimized to obtain a near-uniform temperature distribution in radial as well as axial direction of the billet, and the heating was continued until the liquid fraction reached about 50%. These parameters were determined with the help of a computational fluid dynamics (CFD) model of die filling and solidification of the semisolid alloy. The heated billets were subsequently thixo-cast into automobile components using a real-time controlled die casting machine. The results show that the castings are near net shape, free from porosity, good surface finish and have superior mechanical properties compared to those produced by conventional die casting processes using the same alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain growth kinetics was studied for commercially pure magnesium subjected to equal channel angular extrusion (ECAE). The specimens were ECAE processed upto 4 passes at 523 K following all the three important routes, namely A, 13, and C. Texture and microstructures of the samples were studied using Electron Back Scattered Diffraction (EBSD) technique in a Field Emission Gun Scanning Electron Microscope (FEG-SEM). It was observed that the grain size significantly reduces after ECAE. ECAE process produces a slightly rotated B and C-2 fiber. Static annealing leads to normal grain growth with unimodal distribution of grains through out the temperature range. Average activation energy for grain growth in the temperature range studied is found to be less than the activation energy for lattice diffusion and grain boundary diffusion of magnesium. No significant change in texture during isochronal annealing for 1 hour i.e., the predominant deformation texture remains same.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sanukitoid series intrusions can be found throughout the Archean Karelian Province of the Fennoscandian shield. All sanukitoids share the same controversial elemental characteristics: they have high content of incompatible elements such as K, Ba, and Sr as well as high content of the compatible elements Mg, Cr, and Ni, and high Mg#. This composition is explained by an enriched mantle wedge origin in a Neoarchean subduction setting. This study concentrates on sanukitoid intrusions and tonalite-trondhjemite-granodiorite series (TTGs) from Finnish part of the Karelian Province. The collected rock samples have been studied in the field and under microscope as well as for their whole-rock (including isotopes) and mineral compositions. The new data together with previously published analyses help us to better understand the petrogenesis, tectonic setting and reworking of the Archean rock units. TTGs from the Karelian Province form a voluminous series of granitoids and reworked migmatites. This study divides TTG series into two subgroups based on their elemental composition: low-HREE (heavy rare earth element) TTGs and high-HREE TTGs indicating pressure differences in their source. Sanukitoid series is a minor, divergent group of intrusions. These intrusions are variable sized, and the texture varies from even-grained to K-feldspar porphyritic. The elemental composition differentiates sanukitoids from more voluminous TTG groups, the SiO2 in sanukitoids varies to include series of gabbro, diorite, and granodiorite. U Pb age determinations from sanukitoid series show temporally limited emplacement between ~ 2745 2715 Ma after the main crust forming period in the area. Hafnium, neodymium, common lead, and oxygene isotopes indicate well homogenized characteristics. Recycled crust has made a variable, yet minor, contribution to sanukitoids, as evidenced by oxygene isotopes and inherited zircon cores. A proposed tectonic setting for the formation of the sanukitoid series is slab breakoff of oceanic lithosphere in subduction setting, with sanukitoids deriving from an enriched mantle wedge. The proposed setting explains some of the peculiar features of sanukitoids, such as their temporally limited occurrence and controversial elemental composition. Sanukitoids would occur after cessation of the regional growth of Archean crust, and they could be derived from mantle wedge previously enriched by melts and fluids from oceanic crust and sediments. A subsequent event during the Paleoproterozoic Svecofennian orogeny at ~1.9 Ga affected the appearance and microstructures of the rocks as well as caused redistribution of lead between minerals and whole rock. However, the deformation was not able to obliterate the original geochemical characteristics of these sanukitoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to examine migration of educated Dominicans in light of global processes. Current global developments have resulted in increasingly global movements of people, yet people tend to come from certain places in large numbers rather than others. At the same time, international migration is increasingly selective, which shows in the disproportional number of educated migrants. This study discovers individual and societal motivations that explain why young educated Dominicans decide to migrate and return. The theoretical framework of this thesis underlines that migration is a dynamic process rooted in other global developments. Migratory movements should be seen as a result of interacting macro- and microstructures, which are linked by a number of intermediate mechanisms, meso-structures. The way individuals perceive opportunity structures concretises the way global developments mediate to the micro-level. The case of the Dominican Republic shows that there is a diversity of local responses to the world system, as Dominicans have produced their own unique historical responses to global changes. The thesis explains that Dominican migration is importantly conditioned by socioeconomic and educational background. Migration is more accessible for the educated middle class, because of the availability of better resources. Educated migrants also seem less likely to rely on networks to organize their migrations. The role of networks in migration differs by socioeconomic background on the one hand, and by the specific connections each individual has to current and previous migrants on the other hand. The personal and cultural values of the migrant are also pivotal. The central argument of this thesis is that a veritable culture of migration has evolved in the Dominican Republic. The actual economic, political and social circumstances have led many Dominicans to believe that there are better opportunities elsewhere. The globalisation of certain expectations on the one hand, and the development of the specifically Dominican feeling of ‘externalism’ on the other, have for their part given rise to the Dominican culture of migration. The study also suggests that the current Dominican development model encourages migration. Besides global structures, local structures are found to ve pivotal in determining how global processes are materialised in a specific place. The research for this thesis was conducted by using qualitative methodology. The focus of this thesis was on thematic interviews that reveal the subject’s point of view and give a fuller understanding of migration and mobility of the educated. The data was mainly collected during a field research phase in Santo Domingo, the Dominican Republic in December 2009 and January 2010. The principal material consists of ten thematic interviews held with educated Dominican current or former migrants. Four expert interviews, relevant empirical data, theoretical literature and newspaper articles were also comprehensively used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to the complexity of the wear process, high stress grinding abrasion is quite different from two-body abrasive wear. Reported data on two-body abrasive wear reveal that the wear decreases with an increase in steel hardness. This relationship can be established without having to consider the microstructure of the steel grinding medium. However, it is known that hardness cannot be directly employed to predict the wear of steel balls under three-body grinding abrasion, as occurs during dry grinding of ores in ball mills. The present work suggests that the wear behaviour of grinding balls can be classified according to the microstructural family to which they belong. Thus, in this work on AISI 52100 steel, the separate groups of microstructures were spheroidite—pearlite, bainite, tempered martensite and martensite with retained austenite. It appears that wear behaviour of the first three groups follows the same trend as that observed for two-body wear. The data suggest that an optimum level of retained austenite could improve the wear resistance of microstructures containing martensite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attempt has been made to systematically investigate the effects of microstructural parameters, such as the prior austenite grain size (PAGS), in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels in a quenched and tempered high-strength steel. By austenitizing at various temperatures, the PAGS was varied from about 0.7 to 96 μm. The microstructures with these grain sizes were tempered at 200 °C, 400 °C, and 530 °C and tested for fatigue thresholds and crack closure. It has been found that, in general, three different trends in the dependence of both the total threshold stress intensity range, ΔK th , and the intrinsic threshold stress intensity range, ΔK eff, th , on the PAGS are observable. By considering in detail the factors such as cyclic stress-strain behavior, environmental effects on FCG, and embrittlement during tempering, the present observations could be rationalized. The strong dependence of ΔK th and ΔK eff, th on PAGS in microstructures tempered at 530 °C has been primarily attributed to cyclic softening and thereby the strong interaction of the crack tip deformation field with the grain boundary. On the other hand, a less strong dependence of ΔK th and ΔK eff, th on PAGS is suggested to be caused by the cyclic hardening behavior of lightly tempered microstructures occurring in 200 °C temper. In both microstructures, crack closure influenced near-threshold FCG (NTFCG) to a significant extent, and its magnitude was large at large grain sizes. Microstructures tempered at the intermediate temperatures failed to show a systematic variation of ΔKth and ΔKeff, th with PAGS. The mechanisms of intergranular fracture vary between grain sizes in this temper. A transition from “microstructure-sensitive” to “microstructure-insensitive” crack growth has been found to occur when the zone of cyclic deformation at the crack tip becomes more or less equal to PAGS. Detailed observations on fracture morphology and crack paths corroborate the grain size effects on fatigue thresholds and crack closure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grinding media wear appears to be non-linear with the time of grinding in a laboratory-scale ball mill. The kinetics of wear can be expressed as a power law of the type w=atb, where the numerical constant a represents wear of a particular microstructure at time t = 1 min and b is the wear exponent which is independent of the particle size prevailing inside a ball mill at any instant of time of grinding. The wear exponent appears to be an indicator of the cutting wear mechanism in dry grinding: a plot of the inverse of the normalised wear exponent (Image ) versusHs (where Hs is the worn surface hardness of the media) yields a curve similar to that of a wear resistance plot obtained in the case of two-body sliding abrasive wear. This method of evaluating the cutting wear resistance of media is demonstrated by employing 15 different microstructures of AISI-SAE 52100 steel balls in dry grinding of quartz in a laboratory-scale ball mill.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type of abrasion that the grinding medium experiences inside a ball mill is classified as high stress or grinding abrasion, because the stress levels at the surface of the medium exceed the yield stress of the metal when hard abrasives are crushed. During dry grinding of ores the medium undergoes not only abrasion but also erosion and impact. As all three mechanisms of wear occur simultaneously, it is difficult to follow the individual components of wear. However, it is possible to show that the overall kinetics of wear follows a simple power law of the type w = at(b), where w is the weight loss of the grinding medium for a specified grinding time t and a and b are constants. Experimental data, obtained from dry grinding of quartz for a wide range of times using AISI 52100 steel balls having various microstructures in a laboratory scale batch mill, are fitted to the proposed equation and the wear rate w is calculated from the first derivative of the equation. The mean particle sizes of the quartz charge DBAR corresponding to 50 and 80% retained size are determined by mechanical sieving of the ground product after a grinding time t and thus the relationship between wear rate and particle size of the abrasive is established. It is found that w increases rapidly with DBAR up to some critical size and then increases at a much lower rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diacetylenic phospholipid, 1,2 bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), forms helices and tubules in addition to liposomes. The diacetylenic moiety responsible for the transformation is probed by 2-D NMR correlated spectroscopy. Chemical shift assignments and the analysis of 2D-COSY measurements were done on the lipid in chloroform-d solution. Based on this analysis, a model for the lipid is proposed. The geometry of the headgroup, glycerol backbone and acyl chains up to three methylenes from glycerol backbone [-(CH2)(3)-] is similar to that of dipalmitoyl phosphatidylcholine. The estimated torsional angle for methylene groups adjacent to diacetylenic moieties suggested an overall tilt of the diacetylenic lipid molecule from the bilayer axis of 25-30 degrees. This tilt could be negative or positive depending on the handedness of the resultant microstructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.