962 resultados para metals in urine
Resumo:
Agricultural management with chemicals may contaminate the soil with heavy metals. The objective of this study was to apply Principal Component Analysis and geoprocessing techniques to identify the origin of the metals Cu, Fe, Mn, Zn, Ni, Pb, Cr and Cd as potential contaminants of agricultural soils. The study was developed in an area of vineyard cultivation in the State of São Paulo, Brazil. Soil samples were collected and GPS located under different uses and coverings. The metal concentrations in the soils were determined using the DTPA method. The Cu and Zn content was considered high in most of the samples, and was larger in the areas cultivated with vineyards that had been under the application of fungicides for several decades. The concentrations of Cu and Zn were correlated. The geoprocessing techniques and the Principal Component Analysis confirmed the enrichment of the soil with Cu and Zn because of the use and management of the vineyards with chemicals in the preceding decades.
Resumo:
A procedure for the simultaneous determination of Cr, Ni, and V in urine by electrothermal atomic absorption spectrometry (ET AAS) was optimized by factorial design, and performed at a pyrolysis and atomization temperatures of 1300 and 2500 ºC, respectively, using 15 µg de Mg(NO3)2 as chemical modifier. Characteristics mass of 14, 6 and 220 ρg and detection limits of the method of 0.07, 0.38 and 0.75 µg L-1 were obtained for Cr, Ni and V respectively. The methodology was validated using a Liphochek Urine Metals Control sample (Bio-Rad) (P=0.05). The methodology was applied to samples of voluntary Venezuelan people, not environmentally exposed to specific emissions, and results ranging from < LOD-1.1 and 1.3-3.3 µg L-1 was observed for Cr and V, respectively, and not detectable levels for Ni.
Resumo:
An enantioselective high-performance liquid chromatographic method for the analysis of carvedilol in plasma and urine was developed and validated using (-)-menthyl chloroformate (MCF) as a derivatizing reagent. Chloroform was used for extraction, and analysis was performed by HPLC on a C18 column with a fluorescence detector. The quantitation limit was 0.25 ng/ml for S(-)-carvedilol in plasma and 0.5 ng/ml for R(+)-carvedilol in plasma and for both enantiomers in urine. The method was applied to the study of enantioselectivity in the pharmacokinetics of carvedilol administered in a multiple dose regimen (25mg/12h) to a hypertensive elderly female patient. The data obtained demonstrated highest plasma levels for the R(+)-carvedilol(AUCSS 75.64 vs 37.29ng/ml). The enantiomeric ratio R(+)/S(-) was 2.03 for plasma and 1.49 0 - 12 for urine (Aeo-12 17.4 vs 11.7 pg). Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
A hydride cold-trapping technique was developed and optimised for the measurement of urinary arsenic metabolites. The analytical precision of the method was found to be 6.1, 4.0 and 4.8% (n = 5) for inorganic arsenic (As-i), monomethylarsonate (MMA) and dimethylarsinate (DMA), respectively, with recoveries close to 100%, The detection limits were 1.0, 1.3 and 3 ng for As-i, MMA and DMA, respectively. The method was then used to analyse urine samples obtained from three groups of workers for occupational exposure in three companies where copper chrome arsenate was used for timber treatment. The results were compared with those for a normal control group of laboratory workers. Arsenic and its metabolites were also measured in experimental rats given 5 mg As kg(-1) body mass by oral gavage in the form of sodium arsenite, calcium arsenite or sodium arsenate. Occupational workers showed a significantly higher excretion of As-i, Up to two fold increases of urinary As-i excretion in rats compared with control rats were also observed in animals dosed with various forms of arsenicals. The method is suitable for the measurement of arsenic metabolites in urine of both humans and experimental animals.
Resumo:
Streams located in areas of sugarcane cultivation receive high concentrations of metal ions from soils of the adjacent areas causing accumulation of metals in the aquatic sediment. This impact results in environmental problems and leads to bioaccumulation of metal ions in aquatic organisms. In the present study, metal concentrations in different predatory insects were studied in streams near sugarcane cultivation and compared to reference sites. Possible utilisation of predatory insects as bioindicators of metal contamination due to sugarcane cultivation from 13 neotropical streams was evaluated. Ion concentrations of Al, Cd, Cr, Cu, Zn, Fe, and Mn in adult Belostomatidae (Hemiptera) and in larvae of Libellulidae (Odonata) were analysed. Nine streams are located in areas with sugarcane cultivation, without riparian vegetation (classified as impacted area) and four streams were located in forested areas (reference sites). Metal concentrations in insects were higher near sugarcane cultivations than in control sites. Cluster analysis, complemented by an ANOSIM test, clearly showed that these insect groups are good potential bioindicators of metal contamination in streams located in areas with sugarcane cultivation and can be used in monitoring programmes. We also conclude that Libellulidae appeared to accumulate higher concentrations of metals than Belostomatidae.
Resumo:
Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.
Resumo:
A simple and rapid staphylococcal coagglutination test for the detection of Toxoplasma gondii antigens in mice urine is described. A suspension of protein-A containing Staphylococcus aureus coated with rabbit hyperimmune serum was used as reagent. The sensitivity of the antigen assay was found to be at least 118 ng of the antigen protein per ml. No coagglutination was observed when the reagent was challenged against antigenic solutions of other parasites. The suitability of the method for detecting antigens of T. gondii in urine samples was studied by experimental toxoplasma infection in mice. Before the staphylococcal test, the urine samples were double serially diluted in 0.1 M PBS. From the second day on all samples from infected mice were positive at 1/16 dilution. At this dilution, all samples from non infected mice were negative or did not produce coagglutination. This method might be used in the rapid etiological diagnosis also in human cases of acute toxoplasmosis.
Resumo:
The first finding of a Capillariid in the urinary tract of a free ranging maned wolf (Chrysocyon brachyurus) is described. The individual was an adult male attacked by dogs in the locality of Cayastacito (Santa Fe, Argentina, 31º05' S, 60º 34' W). Eggs found in urine measured 64.6-66.9µm (mean 65.4µm) x 26.9-31µm (mean 29µm). Further studies are needed to determine whether this finding corresponds to a new Capillariid species, related to C. brachyurus, or it is an already described species that has been introduced by domestic dogs.
Resumo:
We analyzed data from historical controls treated with meglumine antimoniate to compare the frequency of adverse events observed in patients with cutaneous leishmaniasis treated with the same dose of meglumine antimoniate contaminated with heavy metals in an endemic area of the State of Bahia, Brazil. Group A patients were treated in 2000 with the drug produced by Eurofarma Laboratórios Ltda., São Paulo, Brazil (lot A) and group B patients were treated in 1996 with the reference drug produced by Rhodia Farma Ltda., São Paulo, Brazil (lot B). We observed an unusual higher frequency of skin reactions in group A patients. However, all type of adverse events observed in group A were also observed in group B. The physico-chemical analysis of these lots revealed that lot A had lower pH and higher concentration of total and trivalent antimony, lead, cadmium, and arsenic. Our findings suggest that the skin reactions could be attributed to heavy metal contamination of lot A.
Resumo:
19-Norandrosterone (19-NA) as its glucuronide derivative is the target metabolite in anti-doping testing to reveal an abuse of nandrolone or nandrolone prohormone. To provide further evidence of a doping with these steroids, the sulfoconjugate form of 19-norandrosterone in human urine might be monitored as well. In the present study, the profiling of sulfate and glucuronide derivatives of 19-norandrosterone together with 19-noretiocholanolone (19-NE) were assessed in the spot urines of 8 male subjects, collected after administration of 19-nor-4-androstenedione (100mg). An LC/MS/MS assay was employed for the direct quantification of sulfoconjugates, whereas a standard GC/MS method was applied for the assessment of glucuroconjugates in urine specimens. Although the 19-NA glucuronide derivative was always the most prominent at the excretion peak, inter-individual variability of the excretion patterns was observed for both conjugate forms of 19-NA and 19-NE. The ratio between the glucuro- and sulfoconjugate derivatives of 19-NA and 19-NE could not discriminate the endogenous versus the exogenous origin of the parent compound. However, after ingestion of 100mg 19-nor-4-androstenedione, it was observed in the urine specimens that the sulfate conjugates of 19-NA was detectable over a longer period of time with respect to the other metabolites. These findings indicate that more interest shall be given to this type of conjugation to deter a potential doping with norsteroids.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). (Demirdjian et al., 2005). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Size distributions indicated that particles are within the nanometric range. Surface characteristics of sampled particles varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean levels of 8- hydroxy-2'-deoxyguanosine and several aldehydes (hexanal, heptanal, octanal, nonanal) increased during two consecutive days of exposure for non-smokers. In order to bring some insight into the relation between the particulate characteristics and the formation of ROS by-products, biomarkers levels will be discussed in relation with exposure variables.
Resumo:
For more than 20 years, measurement of catecholamines in plasma and urine in clinical chemistry laboratories has been the cornerstone of the diagnosis of neuroendocrine tumors deriving from the neural crest such as pheochromocytoma (PHEO) and neuroblastoma (NB), and is still used to assess sympathetic stress function in man and animals. Although assay of catecholamines in urine are still considered the biochemical standard for the diagnosis of NB, they have been progressively abandoned for excluding/confirming PHEOs to the advantage of metanephrines (MNs). Nevertheless, catecholamine determinations are still of interest to improve the biochemical diagnosis of PHEO in difficult cases that usually require a clonidine-suppression test, or to establish whether a patient with PHEO secretes high concentrations of catecholamines in addition to metanephrines. The aim of this chapter is to provide an update about the catecholamine assays in plasma and urine and to show the most common pre-analytical and analytical pitfalls associated with their determination.
Resumo:
Soils under natural conditions have heavy metals in variable concentrations and there may be an increase in these elements as a result of the agricultural practices adopted. Transport of heavy metals in soil mainly occurs in forms dissolved in the soil solution or associated with solid particles, water being their main means of transport. In this context, the aim of this study was to evaluate the heavy metal and micronutrient content in the soil and in the grapevine plant and fruit under different irrigation strategies. The experiment was carried out in Petrolina, PE, Brazil. The treatments consisted of three irrigation strategies: full irrigation (FI), regulated deficit irrigation (RDI), and deficit irrigation (DI). During the period of grape maturation, soil samples were collected at the depths of 0-10, 10-20, 20-40, 40-60, and 60-80 cm. In addition, leaves were collected at the time of ripening of the bunches, and berries were collected at harvest. Thus, the heavy metal and micronutrient contents were determined in the soil, leaves, and berries. The heavy metal and micronutrient contents in the soil showed a stochastic pattern in relation to the different irrigation strategies. The different irrigation strategies did not affect the heavy metal and micronutrient contents in the vine leaves, and they were below the contents considered toxic to the plant. In contrast, the greater availability of water in the FI treatment favored a greater Cu content in the grape, which may be a risk to vines, causing instability and turbidity. Thus, adoption of deficit irrigation is recommended so as to avoid compromising the stability of tropical wines of the Brazilian Northeast.
Resumo:
ABSTRACT Heavy metals contained in electronic waste, if discarded improperly, can become bioavailable after vermicomposting, posing a risk to the environment. Small-scale vermicomposting experiments were carried out with printed circuit boards (PCBs) to investigate the migration of heavy metals (Cu, Pb, Zn, Ni, and Sn) to the final compost, as well as the mobility and bioavailability of these metals. High total levels of Pb, Sn and Cu in samples of manure with electronic waste (MEW) and vegetables with electronic waste (VEW) were detected. Based on the initial metal levels in the PCBs and their concentration in the resulting compost, the order of migration of these metals to the MEW and VEW samples was Sn (23.1 %)>Pb (18.4 %)>Ni (4.63 %)>Zn (0.46 %)>Cu (0.14 %) and Sn (24.3 %)>Pb (23.6 %)>Ni (11.33 %)>Zn (1.76 %)>Cu (0.60 %), respectively. Mobility and bioavailability of these metals in the compost were evaluated by three-stage sequential extraction, where F1 was the exchangeable fraction, F2 the organic fraction and F3 the residual fraction. The bioavailability factor (BF) was calculated by the ratio of the sum of fractions F1 and F2 divided by the total sum of the fractions (F1 + F2 + F3). The highest bioavailability factor (BF = 0.92) was found for Pb, the heavy metal considered the greatest environmental concern in this study, indicating the high mobility and the possibility of becoming bioavailable of this metal.