820 resultados para message understanding
Resumo:
Abstract This thesis proposes a set of adaptive broadcast solutions and an adaptive data replication solution to support the deployment of P2P applications. P2P applications are an emerging type of distributed applications that are running on top of P2P networks. Typical P2P applications are video streaming, file sharing, etc. While interesting because they are fully distributed, P2P applications suffer from several deployment problems, due to the nature of the environment on which they perform. Indeed, defining an application on top of a P2P network often means defining an application where peers contribute resources in exchange for their ability to use the P2P application. For example, in P2P file sharing application, while the user is downloading some file, the P2P application is in parallel serving that file to other users. Such peers could have limited hardware resources, e.g., CPU, bandwidth and memory or the end-user could decide to limit the resources it dedicates to the P2P application a priori. In addition, a P2P network is typically emerged into an unreliable environment, where communication links and processes are subject to message losses and crashes, respectively. To support P2P applications, this thesis proposes a set of services that address some underlying constraints related to the nature of P2P networks. The proposed services include a set of adaptive broadcast solutions and an adaptive data replication solution that can be used as the basis of several P2P applications. Our data replication solution permits to increase availability and to reduce the communication overhead. The broadcast solutions aim, at providing a communication substrate encapsulating one of the key communication paradigms used by P2P applications: broadcast. Our broadcast solutions typically aim at offering reliability and scalability to some upper layer, be it an end-to-end P2P application or another system-level layer, such as a data replication layer. Our contributions are organized in a protocol stack made of three layers. In each layer, we propose a set of adaptive protocols that address specific constraints imposed by the environment. Each protocol is evaluated through a set of simulations. The adaptiveness aspect of our solutions relies on the fact that they take into account the constraints of the underlying system in a proactive manner. To model these constraints, we define an environment approximation algorithm allowing us to obtain an approximated view about the system or part of it. This approximated view includes the topology and the components reliability expressed in probabilistic terms. To adapt to the underlying system constraints, the proposed broadcast solutions route messages through tree overlays permitting to maximize the broadcast reliability. Here, the broadcast reliability is expressed as a function of the selected paths reliability and of the use of available resources. These resources are modeled in terms of quotas of messages translating the receiving and sending capacities at each node. To allow a deployment in a large-scale system, we take into account the available memory at processes by limiting the view they have to maintain about the system. Using this partial view, we propose three scalable broadcast algorithms, which are based on a propagation overlay that tends to the global tree overlay and adapts to some constraints of the underlying system. At a higher level, this thesis also proposes a data replication solution that is adaptive both in terms of replica placement and in terms of request routing. At the routing level, this solution takes the unreliability of the environment into account, in order to maximize reliable delivery of requests. At the replica placement level, the dynamically changing origin and frequency of read/write requests are analyzed, in order to define a set of replica that minimizes communication cost.
Resumo:
Although Leontopodium alpinum is considered to be threatened in many countries, only limited scientific information about its autecology is available. In this study, we aim to define the most important ecological factors which influence the distribution of L. alpinum in the Swiss Alps. These were assessed at the national scale using species distribution models based on topoclimatic predictors and at the community scale using exhaustive plant inventories. The latter were analysed using hierarchical clustering and principal component analysis, and the results were interpreted using ecological indicator values. L. alpinum was found almost exclusively on base-rich bedrocks (limestone and ultramaphic rocks). The species distribution models showed that the available moisture (dry regions, mostly in the Inner Alps), elevation (mostly above 2000 m.a.s.l.) and slope (mostly >30°) were the most important predictors. The relevés showed that L. alpinum is present in a wide range of plant communities, all subalpine-alpine open grasslands, with a low grass cover. As a light-demanding and short species, L. alpinum requires light at ground level; hence, it can only grow in open, nutrient-poor grasslands. These conditions are met in dry conditions (dry, summer-warm climate, rocky and draining soil, south-facing aspect and/or steep slope), at high elevations, on oligotrophic soils and/or on windy ridges. Base-rich soils appear to also be essential, although it is still unclear if this corresponds to physiological or ecological (lower competition) requirements.
Resumo:
Owing to its special mode of evolution and central role in the adaptive immune system, the major histocompatibility complex (MHC) has become the focus of diverse disciplines such as immunology, evolutionary ecology, and molecular evolution. MHC evolution has been studied extensively in diverse vertebrate lineages over the last few decades, and it has been suggested that birds differ from the established mammalian norm. Mammalian MHC genes evolve independently, and duplication history (i.e., orthology) can usually be traced back within lineages. In birds, this has been observed in only 3 pairs of closely related species. Here we report strong evidence for the persistence of orthology of MHC genes throughout an entire avian order. Phylogenetic reconstructions of MHC class II B genes in 14 species of owls trace back orthology over tens of thousands of years in exon 3. Moreover, exon 2 sequences from several species show closer relationships than sequences within species, resembling transspecies evolution typically observed in mammals. Thus, although previous studies suggested that long-term evolutionary dynamics of the avian MHC was characterized by high rates of concerted evolution, resulting in rapid masking of orthology, our results question the generality of this conclusion. The owl MHC thus opens new perspectives for a more comprehensive understanding of avian MHC evolution.
Resumo:
Report for the scientific sojourn carried out at the l’ Institute for Computational Molecular Science of the Temple University, United States, from 2010 to 2012. Two-component systems (TCS) are used by pathogenic bacteria to sense the environment within a host and activate mechanisms related to virulence and antimicrobial resistance. A prototypical example is the PhoQ/PhoP system, which is the major regulator of virulence in Salmonella. Hence, PhoQ is an attractive target for the design of new antibiotics against foodborne diseases. Inhibition of the PhoQ-mediated bacterial virulence does not result in growth inhibition, presenting less selective pressure for the generation of antibiotic resistance. Moreover, PhoQ is a histidine kinase (HK) and it is absent in animals. Nevertheless, the design of satisfactory HK inhibitors has been proven to be a challenge. To compete with the intracellular ATP concentrations, the affinity of a HK inhibidor must be in the micromolar-nanomolar range, whereas the current lead compounds have at best millimolar affinities. Moreover, the drug selectivity depends on the conformation of a highly variable loop, referred to as the “ATP-lid, which is difficult to study by X-Ray crystallography due to its flexibility. I have investigated the binding of different HK inhibitors to PhoQ. In particular, all-atom molecular dynamics simulations have been combined with enhanced sampling techniques in order to provide structural and dynamic information of the conformation of the ATP-lid. Transient interactions between these drugs and the ATP-lid have been identified and the free energy of the different binding modes has been estimated. The results obtained pinpoint the importance of protein flexibility in the HK-inhibitor binding, and constitute a first step in developing more potent and selective drugs. The computational resources of the hosting institution as well as the experience of the members of the group in drug binding and free energy methods have been crucial to carry out this work.
Evolutionary history and its relevance in understanding and conserving southern African biodiversity
Resumo:
Abstract : Understanding how biodiversity is distributed is central to any conservation effort and has traditionally been based on niche modeling and the causal relationship between spatial distribution of organisms and their environment. More recently, the study of species' evolutionary history and relatedness has permeated the fields of ecology and conservation and, coupled with spatial predictions, provides useful insights to the origin of current biodiversity patterns, community structuring and potential vulnerability to extinction. This thesis explores several key ecological questions by combining the fields of niche modeling and phylogenetics and using important components of southern African biodiversity. The aims of this thesis are to provide comparisons of biodiversity measures, to assess how climate change will affect evolutionary history loss, to ask whether there is a clear link between evolutionary history and morphology and to investigate the potential role of relatedness in macro-climatic niche structuring. The first part of my thesis provides a fine scale comparison and spatial overlap quantification of species richness and phylogenetic diversity predictions for one of the most diverse plant families in the Cape Floristic Region (CFR), the Proteaceae. In several of the measures used, patterns do not match sufficiently to argue that species relatedness information is implicit in species richness patterns. The second part of my thesis predicts how climate change may affect threat and potential extinction of southern African animal and plant taxa. I compare present and future niche models to assess whether predicted species extinction will result in higher or lower V phylogenetic diversity survival than what would be experienced under random extinction processes. l find that predicted extinction will result in lower phylogenetic diversity survival but that this non-random pattern will be detected only after a substantial proportion of the taxa in each group has been lost. The third part of my thesis explores the relationship between phylogenetic and morphological distance in southern African bats to assess whether long evolutionary histories correspond to equally high levels of morphological variation, as predicted by a neutral model of character evolution. I find no such evidence; on the contrary weak negative trends are detected for this group, as well as in simulations of both neutral and convergent character evolution. Finally, I ask whether spatial and climatic niche occupancy in southern African bats is influenced by evolutionary history or not. I relate divergence time between species pairs to climatic niche and range overlap and find no evidence for clear phylogenetic structuring. I argue that this may be due to particularly high levels of micro-niche partitioning. Résumé : Comprendre la distribution de la biodiversité représente un enjeu majeur pour la conservation de la nature. Les analyses se basent le plus souvent sur la modélisation de la niche écologique à travers l'étude des relations causales entre la distribution spatiale des organismes et leur environnement. Depuis peu, l'étude de l'histoire évolutive des organismes est également utilisée dans les domaines de l'écologie et de la conservation. En combinaison avec la modélisation de la distribution spatiale des organismes, cette nouvelle approche fournit des informations pertinentes pour mieux comprendre l'origine des patterns de biodiversité actuels, de la structuration des communautés et des risques potentiels d'extinction. Cette thèse explore plusieurs grandes questions écologiques, en combinant les domaines de la modélisation de la niche et de la phylogénétique. Elle s'applique aux composants importants de la biodiversité de l'Afrique australe. Les objectifs de cette thèse ont été l) de comparer différentes mesures de la biodiversité, 2) d'évaluer l'impact des changements climatiques à venir sur la perte de diversité phylogénétique, 3) d'analyser le lien potentiel entre diversité phylogénétique et diversité morphologique et 4) d'étudier le rôle potentiel de la phylogénie sur la structuration des niches macro-climatiques des espèces. La première partie de cette thèse fournit une comparaison spatiale, et une quantification du chevauchement, entre des prévisions de richesse spécifique et des prédictions de la diversité phylogénétique pour l'une des familles de plantes les plus riches en espèces de la région floristique du Cap (CFR), les Proteaceae. Il résulte des analyses que plusieurs mesures de diversité phylogénétique montraient des distributions spatiales différentes de la richesse spécifique, habituellement utilisée pour édicter des mesures de conservation. La deuxième partie évalue les effets potentiels des changements climatiques attendus sur les taux d'extinction d'animaux et de plantes de l'Afrique australe. Pour cela, des modèles de distribution d'espèces actuels et futurs ont permis de déterminer si l'extinction des espèces se traduira par une plus grande ou une plus petite perte de diversité phylogénétique en comparaison à un processus d'extinction aléatoire. Les résultats ont effectivement montré que l'extinction des espèces liées aux changements climatiques pourrait entraîner une perte plus grande de diversité phylogénétique. Cependant, cette perte ne serait plus grande que celle liée à un processus d'extinction aléatoire qu'à partir d'une forte perte de taxons dans chaque groupe. La troisième partie de cette thèse explore la relation entre distances phylogénétiques et morphologiques d'espèces de chauves-souris de l'Afrique australe. ll s'agit plus précisément de déterminer si une longue histoire évolutive correspond également à des variations morphologiques plus grandes dans ce groupe. Cette relation est en fait prédite par un modèle neutre d'évolution de caractères. Aucune évidence de cette relation n'a émergé des analyses. Au contraire, des tendances négatives ont été détectées, ce qui représenterait la conséquence d'une évolution convergente entre clades et des niveaux élevés de cloisonnement pour chaque clade. Enfin, la dernière partie présente une étude sur la répartition de la niche climatique des chauves-souris de l'Afrique australe. Dans cette étude je rapporte temps de divergence évolutive (ou deux espèces ont divergé depuis un ancêtre commun) au niveau de chevauchement de leurs niches climatiques. Les résultats n'ont pas pu mettre en évidence de lien entre ces deux paramètres. Les résultats soutiennent plutôt l'idée que cela pourrait être I dû à des niveaux particulièrement élevés de répartition de la niche à échelle fine.
Resumo:
Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.
Resumo:
The Mountain Research Initiative invited Dr Eva Spehn, Director of the Global Mountain Biodiversity Assessment (GMBA), and Dr Antoine Guisan, head of the Spatial Ecology Group at the University of Lausanne, to introduce the reader to their coordinated efforts to advance understanding and prediction of mountain biodiversity. Antoine Guisan's EUROMONT project is one of the many scientific projects that may potentially provide data for the new GMBA initiative for a GIS mountain biodiversity database.
Resumo:
In light of the existing theories about institutional change, this paper seeks to advance a common framework to understand the unfolding of decentralization and federalization in three countries: Brazil, Spain, and South Africa. Although in different continents, these three countries witnessed processes after their respective transitions to democracy that transferred administrative and fiscal authority to their regions (decentralization) and vertically distributed political and institutional capacity (federalization). This paper attempts to explain how institutional changes prompted a shift of power and authority towards regional governments by looking at internal sources of change within the intergovernmental arena in the three countries. This analysis is organized around two propositions: that once countries transit to democracy under all-encompassing constitutions there are high incentives for institutional change, and that under a bargained intergovernmental interaction among political actors subnational political elites are able to advance their interests incrementally. In short, through a common framework this paper will explain the evolving dynamics of intergovernmental dynamics in three countries.
Resumo:
Drawing on Social Representations Theory, this study investigates focalisation and anchoring during the diffusion of information concerning the Large Hadron Collider (LHC), the particle accelerator at the European Organisation for Nuclear Research (CERN). We hypothesised that people focus on striking elements of the message, abandoning others, that the nature of the initial information affects diffusion of information, and that information is anchored in prior attitudes toward CERN and science. A serial reproduction experiment with two generations and four chains of reproduction diffusing controversial versus descriptive information about the LHC shows a reduction of information through generations, the persistence of terminology regarding the controversy and a decrease of other elements for participants exposed to polemical information. Concerning anchoring, positive attitudes toward CERN and science increase the use of expert terminology unrelated to the controversy. This research highlights the relevance of a social representational approach in the public understanding of science.