969 resultados para manganese sulfate
Resumo:
The effect of acid rain SO42− deposition on peatland CH4 emissions was examined by manipulating SO42− inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha−1 yr−1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m−2 from the controls and (in order of increasing SO42− dose size) 10.7, 13.2, and 9.8 g m−2 from the three SO42− treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42− at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42− from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.
Resumo:
A rapid, templateless, surfactantless approach is proposed to prepare microfibrils by simply mixing of aqueous cupric sulfate and o-phenylenediamine (oPD) solutions at room temperature. The as-prepared poly(o-phenylenediamine) (PoPD) microfibrils have been characterized by optical microscope, transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis) and X-ray diffraction (XRD).
Resumo:
Extraction kinetics of thorium(IV) with primary amine N1923 in sulfate media has been investigated by a constant interfacial cell with laminar flow. Studies of interfacial tension and effects of the stirring rate, temperature, and specific interfacial area on mass transfer rate show that the most probable reaction zone takes place at the liquid-liquid interface. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the rate equation of extracting thorium has been obtained as follows: -d[Th(IV)]((o))/dt = 10(-3.10)center dot[Th(IV)](0.89)center dot[(RNH3)(2)SO4](0.74).
Resumo:
A dense clad overlay with chemical inertness was achieved on top of the plasma-sprayed YSZ thermal barrier coatings by laser in order to protect them from hot-corrosion attack. The Al2O3-clad YSZ coating exhibited good hot-corrosion behavior in contact with salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4) for a longtime of 100 h at 1173 K. The LaPO4-clad YSZ coating showed corrosion resistance inferior to the Al2O3-clad one. Yttria was leached from YSZ by reaction between Y2O3 and V2O5, which caused progressive destabilization transformation of YSZ from tetragonal (t) to monoclinic (m) phase. The chemical inertness of the clad layers and the restrained infiltration of the molten corrosive salts by the dense clad layers were primary contributions to improvement of the hot-corrosion resistances.
Resumo:
The title compound, {[Mn(C10H28N6)][Sn3Se7]}(n), consists of anionic (infinity){[Sn3Se7](2-)} layers interspersed by [Mn(peha)](2+) complex cations ( peha is pentaethylenehexamine). Pseudo-cubic (Sn3Se4) cluster units within each layer are held together to form a 6(3) net with a hole size of 8.74 x 13.87 angstrom. Weak N-H center dot center dot center dot Se interactions between the host inorganic frameworks and metal complexes extend the components into a three-dimensional network. The incorporation of metal complexes into the flexible anion layer dictates the distortion of the holes.
Resumo:
In this paper, we have reported a facile method for the synthesis of ordered magnetic core-manganese oxide shell nanostructures. The process included two steps. First, manganese ferrite nanoparticles were obtained through a solvothermal method. Then, the manganese ferrite nanoparticles were mixed directly with KMnO4 solution without any additional modified procedures of the magnetic cores. It has been found that Mn element in the core can react with KMnO4 to form manganese oxide which acts as a seed for the in-situ growth of manganese oxide shells. This is significant for the controllable fabrication of symmetrical ordered manganese oxide shell structures. The shell thickness can be easily controlled through the reaction time. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy have been employed to characterize the products at different reaction time.
Resumo:
In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.
Resumo:
The influences of additive, diluents, temperature, acidity of the aqueous phase on the interfacial behavior of primary amine N1923 in sulfate media have been investigated using the Du Nouy ring method. In addition, the effect of concentration of thorium(IV) loaded in the organic phase on the interfacial tension has also been studied. The interfacial tension isotherms are processed by matching different adsorption equations such as the Gibbs and the Szyszkowski. The surface excess at the saturated interface (Gamma (max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C-min) under different conditions are calculated according to two adsorption equations to be presented in comprehensive tables and figures. It appears that primary amine N1923 has strong interfacial activity and behaves very differently in various diluents systems. The surface excess at saturated interface increase with the type of diluerits in the following order: chloroform < aromatic hydrocarbons < aliphatic hydrocarbons. The relationship between the interfacial activity and kinetics of thorium extraction by primary amine N1923 has been discussed by considering different factors. However, the interfacial activity of primary amine N1923 is only a qualitative parameter suggesting the interfacial mechanism for thorium extraction, it cannot give strong evidence quantitatively supporting this mechanism.