910 resultados para m-sequences
Resumo:
The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the similar to 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428 bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst = 0.70, P < 0.00001; Nm = 0.21) and Minjiang River (Fst = 0.73, P < 0.00001; Nm = 0.18) groups, while low Fst value (Fst = 0.018, P > 0.05) and high rate of migration (Nm = 28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (<= 0.12) and high Nm values (>3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst >= 0.59; Nm < 1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. (C) 2009 Published by Elsevier B.V.
Resumo:
Based on its characteristic oral apparatus, the ciliate subclass Peritrichia has long been recognized as a monophyletic assemblage composed of the orders Mobilida and Sessilida. Following the application of molecular methods, the monophyly of Peritrichia has recently been questioned. We investigated the phylogenetic relationships of the peritrichous ciliates based on four further complete small subunit ribosomal RNA sequences of mobilids, namely Urceolaria urechi, Trichodina meretricis, Trichodina sinonovaculae, and Trichodina ruditapicis. In all phylogenetic trees, the mobilids never clustered with the sessilids, but instead formed a monophyletic assemblage related to the peniculines. By contrast, the sessilids formed a sister clade with the hymenostomes at a terminal position within the Oligohymenophorea. We therefore formally separate the mobilids from the sessilids (Peritrichia sensu stricto) and establish a new subclass, Mobilia Kahl, 1933, which contains the order Mobilida Kahl, 1933. We argue that the oral apparatus in the mobilians and sessilid peritrichs is a homoplasy, probably due to convergent evolution driven by their similar life-styles and feeding strategies. Morphologically, the mobilians are distinguished from all other oligohymenophoreans by the presence of the adhesive disc, this character being a synapomorphy for the Mobilia.
Resumo:
In the,paper, we explored the intra- and interspecific evolutionary variation among species of Camallanus collected from different fish species in various regions of China. We determined the internal transcribed spacers of ribosomal DNA (ITS rDNA) sequences of these nematodes. The divergence (uncorrected p-distance) of ITS 1, ITS2, and ITS rDNA data sets confirmed 2 valid species of Camallanus in China, i.e., C. cotti and C. hypophthalmichthys. The 2 species were distinguished not only by their different morphologies and host ranges but also by a letranucleotide microsatellite (TTGC)n present in the ITS I region of C cotti. Phylogenetic analyses of the nematodes disclosed 2 main clades, corresponding to different individuals of C cotti and C. hypophthalmichthys from different fish species in various geographical locations, although the interior nodes of each clade received poor support.
Resumo:
Hir/Hira (histone regulation) genes were first identified in yeast as negative regulators of histone gene expression. It has been confirmed that HIRA is a conserved family of proteins present in various animals and plants. In this paper, the cDNAs of the Hira homolog named CagHira and CaHira were isolated from gynogenetic gibel carp (gyno-carp) and gonochoristic color crucian carp (gono-carp) respectively. The full-length CagHira is 3,860 bp in length with an open reading frame (ORF) of 3,033 bp that encodes 1,011 amino acids, while the full-length CaHira is 3,748 bp in length and also has an ORF of 3,033 bp. The deduced amino acid sequences of both Hira homologs contain seven WD domains and show high identity with other HIRA family members. RT-PCR analyses revealed strong expression of Hira in the ovaries, whereas no expression was detected in the testes of either of the fishes. Hira transcription was not detected in the liver of gyno-carp, but a high level of Hira mRNA was observed in gono-carp. The temporal expression pattern showed that the Hira mRNA is consistently expressed during all embryonic development stages in gyno-carp. However, the abundance of CaHira mRNA significantly decreased (P < 0.05) shortly after fertilization and then increased again and remained stable from gastrula till hatching. The varying spatiotemporal expression patterns of Hira genes in gyno-carp and gono-carp may be associated with the differing reproductive modes used by these two closely related fishes. Our results suggest that Hira may play a role not only in the decondensation of sperm nucleus and the formation of pronucleus during fertilization, but also in gastrulation and the subsequent development of embryos.
Resumo:
The phylogenetic relationships within the family Penaeidae are examined based on mitochondrial 16S rRNA gene sequence analysis of 30 species from 20 genera. The analysis generally supports the three- tribe scheme proposed by Burkenroad ( 1983) but it is not consistent with the five- group classification of Kubo ( 1949). Three clades are resolved: ( Penaeus sensu stricto + Fenneropenaeus + Litopenaeus + Farfantepenaeus + Marsupenaeus + Melicertus + Funchalia + Heteropenaeus), ( Metapenaeus + Parapenaeopsis + Xiphopenaeus + Rimapenaeus + Megokris + Trachysalambria) and ( Metapenaeopsis + Penaeopsis + Parapenaeus), corresponding to the Penaeini, Trachypenaeini and Parapenaeini respectively, while the affinities of Atypopenaeus and Trachypenaeopsis are obscure. The molecular data support that Miyadiella represents the juvenile stage of Atypopenaeus. Within the Trachypenaeini, Trachypenaeus sensu lato is clearly paraphyletic, while the monophyly of Penaeus sensu lato in the Penaeini is questionable.
Resumo:
The phylogenetic relationships among the Ergasilidae genera are poorly understood. In this study, 14 species from four genera in the Ergasilidae including Sinergasilus, Ergasilus, Pseudergasilus, and Paraergasilus were collected in China, and their phylogenetic relationships were examined using neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods based on partial sequences of 18S and 28S ribosomal deoxyribonucleic acid, respectively. All the analyses suggest that the Sinergasilus and Paraergasilus are both monophyletic, but the Ergasilus is polyphyletic rather than monophyletic. Considering the relationships among the four genera, the phylogenetic analyses and subsequent hypothesis tests all suggest that Pseudergasilus clustered with some Ergasilus species may have a closer relationship with Sinergasilus rather than with Paraergasilus. It is proposed that the Sinergasilus and the Pseudergasilus species might have evolved from Ergasilus species.
Resumo:
The family Cyprinidae is widely distributed in East Asia, and has the important phylogenetic significance in the fish evolution. In this study, the 5' end partial sequences (containing exon 1, exon 2 and indel 1) of S6K1 gene were obtained from 30 representative species in Cyprinidae and outgroup using PCR amplification and sequencing. The phylogenetic relationships of Cyprinidae were reconstructed with neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian methods. Myxocyprinus asiaticus (Catostomidae) was assigned to the outgroup taxon. Similar phylogenetic relationships within the family Cyprinidae were achieved with the four analyses. Leuciscini and Barbini were monophyletic lineages respectively with the high nodal supports. Leuciscini comprises Hypophthalmichthyinae, Xenocyprinae, Cultrinae, Gobioninae, Acheilognathinae and East Asian species of Leuciscinae and Danioninae. Monophyly of East Asian clade was supported with high nodal support. Barbini comprises Schizothoracinae, Barbinae, Cyprininae and Labeoninae. The monophyletic lineage consisting of Danio rerio, D. myersi, and Rasbora trilineata was basal in the tree. In addition, the large fragment indels in intron 1 were analyzed to improve the understanding of Cyprinidae relationships. The results showed that the large fragment indels were correlated with the relations among species. Some conserved regions in intron 1 were thought to be involved in the functional regulation. However, no correlation was found between sequence variations and species characteristic size.
Resumo:
Expressed sequence tags (ESTs) are a source for microsatellite development. In the present study, EST-derived microsatelltes (EST-SSRs) were generated and characterized in the common carp (Cyprinus carpio) by data mining from updated public EST databases and by subsequent testing for polymorphism. About 5.5% (555) of 10,088 ESTs contain repeat motifs of various types and lengths with CA being the most abundant dinucleotide one. Out of the 60 EST-SSRs for which PCR primers were designed, 25 loci showed polymorphism in a common carp population with the alleles per locus ranging from 3 to 17 (mean 7). The observed (H-O) and expected (HE) heterozygosities of these EST-SSRs were 0.13-1.00 and 0.12-0.91, respectively. Six EST-SSR loci significantly deviated from the Hardy-Weinberg equilibrium (HWE) expectation, and the remaining 19 loci were in HWE. Of the 60 primer sets, the rates of polymorphic EST-SSRs were 42% in common carp, 17% in crucian carp (Carassius auratus), and 5% in silver carp (Hypophthalmichthys molitrix), respectively. These new EST-SSR markers would provide sufficient polymorphism for population genetic studies and genome mapping of the common carp and its closely related fishes. (c) 2007 Published by Elsevier B.V.
Resumo:
The phylogeny of Oedogoniales was investigated by using nuclear 18S rDNA sequences. Results showed that the genus Oedocladium, as a separated clade, was clustered within the clade of Oedogonium; whereas the genus Bulbochaete was in a comparatively divergent position to the other two genera. The relationship among the species of Oedogonium was discussed, focusing on ITS-2 phylogeny analyzed combining with some morphological characteristics. Our results showed that all the dioecious nannandrous taxa involved in this study were resolved into one clade, while all the monocious taxa were clustered into another clade as a sister group to the former. The report also suggests that the dioecious macrandrous taxa form a paraphyly and could be more basally situated than the dioecious nannandrous and the monoecious taxa by means of molecular phylogeny and morphotype investigations.
Resumo:
The complete internal transcribed spacer 1 (ITS1), 5.8S ribosomal DNA, and ITS2 region of the ribosomal DNA from 60 specimens belonging to two closely related bucephalid digeneans (Dollfustrema vaneyi and Dollfustrema hefeiensis) from different localities, hosts, and microhabitat sites were cloned to examine the level of sequence variation and the taxonomic levels to show utility in species identification and phylogeny estimation. Our data show that these molecular markers can help to discriminate the two species, which are morphologically very close and difficult to separate by classical methods. We found 21 haplotypes defined by 44 polymorphic positions in 38 individuals of D. vaneyi, and 16 haplotypes defined by 43 polymorphic positions in 22 individuals of D. hefeiensis. There is no shared haplotypes between the two species. Haplotype rather than nucleotide diversity is similar between the two species. Phylogenetic analyses reveal two robustly supported clades, one corresponding to D. vaneyi and the other corresponding to D. hefeiensis. However, the population structures between the two species seem to be incongruent and show no geographic and host-specific structure among them, further indicating that the two species may have had a more complex evolutionary history than expected.
Resumo:
The family Cyprinidae is one of the largest fish families in the world, which is widely distributed in East Asian, with obvious difference in characteristic size among species. The phylogenetic analysis of cyprinid taxa based on the functionally important genes can help to understand the speciation and functional divergench of the Cyprinidae. The c-myc gene is an important gene regulating individual growth. In the present study, the sequence variations of the cyprinid c-myc gene and their phylogenetic significance were analyzed. The 41 complete sequences of the c-myc gene were obtained from cyprinids and outgroups through PCR amplification and clone. The coding DNA sequences of the c-myc gene were used to infer molecular phylogenetic relationships within the Cyprinidae. Myxocyprinus asiaticus (Catostomidae), Misgurnus anguillicaudatus (Cobitidae) and Hemimyzon sinensis (Homalopteridae) were assigned to the outgroup taxa. Phylogenetic analyses using maximum parsimony (MP), maximum likelihood (ML), and Bayesian retrieved similar topology. Within the Cyprinidae, Leuciscini and Barbini formed the monophyletic lineage respectively with high nodal supports. Leuciscini comprises Xeno-cyprinae, Cultrinae, East Asian species of Leuciscinae and Danioninae, Gobioninae and Acheilognathinae, and Barbini contains Schizothoracinae, Barbinae, Cyprininae and Labeoninae. Danio rerio, D. myersi and Rasbora trilineata were supposed to separate from Leuciscinae and Barbini and to form another lineage, The positions of some Danioninae species were still unresolved. Analyses of both amino acid variation with parsimony information and two high variation regions indicated that there is no correlation between variations of single amino acid or high variation regions and characteristic size of cyprinids. In,addition, the species with smaller size were usually found to be basal within clades in the tree, which might be the results of the adaptation to the primitive ecology and survival pressure.
Resumo:
The phylogenetic relationship of 5 genera, i.e. Diplozoon Nordmann, 1832, Paradiplozoon Achmerov, 1974, Inustiatus Khotenovsky, 1978, Sindiplozoon Khotenovsky, 1981, and Eudiplozoon Khotenovsky, 1985 in the subfamily Diplozoinae Palombi, 1949 (Monogenea, Polyopisthocotylea) was inferred from rDNA ITS-2 region using neighbour-joining (NJ), maximum likelihood (ML) and Bayesian methods. The phylogenetic trees produced by using NJ, ML and Bayesian methods exhibit essentially the same topology. Surprisingly, freshwater species of Paradiplozoon from Europe clustered together with species of Diplozoon, but separated from Chinese Paradiplozoon species. The results of molecular phylogeny and lower level of divergence (4(.)1-15(.)7%) in ITS-2 rDNA among Paradiplozoon from Europe and Diplozoon and, on the other hand, high level of divergence (45(.)3-53(.)7%) among Paradiplozoon species from Europe and China might indicate the non-monophyletic origin of the genus Paradiplozoon. Also, the generic status of European Paradiplozoon needs to be revised. The species of Paradiplozoon in China is a basal group in Diplozoinae as revealed by NJ and Bayesian methods, and Sindiplozoon appears to be closely related to European Paradiplozoon and Diplozoon. with their relationship to Eudiplozoon and Inustiatus being unresolved.
Resumo:
We recovered the phylogenetic relationships among 23 species and subspecies of the highly specialized grade schizothoracine fishes distributing at 36 geographical sites in the Tibetan Plateau and its Surrounding regions by analyzing sequences of cytochrome b genes. Furthermore, we estimated the possible divergent times among lineages based on a historical geological isolation event in the Tibetan Plateau. The molecular data revealed that the highly specialized grade schizothoracine fishes were not a monophyletic group, but were the same as genera Gymnocypris and Schizogypsis. Our results indicated that the molecular phylogenetic relationships apparently reflected their geographical and historical associations with drainages, namely species from the same and adjacent drainages clustered together and had close relationships. The divergence times of different lineages were well consistent with the rapid uplift phases of the Tibetan Plateau in the late Cenozoic, suggesting that the origin and evolution of schizothoracine fishes were strongly influenced by environment changes resulting from the upheaval of the Tibetan Plateau.
Resumo:
To determine the phylogenetic position of Stentor within the Class Heterotrichea, the complete small subunit rRNA genes of three Stentor species, namely Stentor polymorphus, Stentor coeruleus, and Stentor roeseli, were sequenced and used to construct phylogenetic trees using the maximum parsimony, neighbor joining, and Bayesian analysis. With all phylogenetic methods, the genus Stentor was monophyletic, with S. roeseli branching basally.
Resumo:
The family Cyprinidae is one of the largest families of fishes in the world and a well-known component of the East Asian freshwater fish fauna. However, the phylogenetic relationships among cyprinids are still poorly understood despite much effort paid on the cyprinid molecular phylogenetics. Original nucleotide sequence data of the nuclear recombination activating gene 2 were collected from 109 cyprinid species and four non-cyprinid cypriniform outgroup taxa and used to infer the cyprinid phylogenetic relationships and to estimate node divergence times. Phylogenetic reconstructions using maximum parsimony, maximum likelihood, and Bayesian analysis retrieved the same clades, only branching order within these clades varied slightly between trees. Although the morphological diversity is remarkable, the endemic cyprinid taxa in East Asia emerged as a monophyletic clade referred to as Xenocypridini. The monophyly for the subfamilies including Cyprininae and Leuciscinae, as well as the tribes including Labeonini, Gobionini, Acheilognathini, and Leuciscini, was also well resolved with high nodal support. Analysis of the RAG2 gene supported the following cyprinid molecular phylogeny: the Danioninae is the most basal subfamily within the family Cyprinidae and the Cyprininae is the sister group of the Leuciscinae. The divergence times were estimated for the nodes corresponding to the principal clades within the Cyprinidae. The family Cyprinidae appears to have originated in the mid-Eocene in Asia, with the cladogenic event of the key basal group Danioninae occurring in the early Oligocene (about 31-30 MYA), and the origins of the two subfamilies, Cyprininae and Leuciscinae, occurring in the mid-Oligocene (around 26 MYA). (c) 2006 Elsevier Inc. All rights reserved.