933 resultados para low-fat sausage
Resumo:
Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.
Resumo:
OBJECTIVE: Low and high body mass index (BMI) values have been shown to increase health risks and mortality and result in variations in fat-free mass (FFM) and body fat mass (BF). Currently, there are no published ranges for a fat-free mass index (FFMI; kg/m(2)), a body fat mass index (BFMI; kg/m(2)), and percentage of body fat (%BF). The purpose of this population study was to determine predicted FFMI and BFMI values in subjects with low, normal, overweight, and obese BMI. METHODS: FFM and BF were determined in 2986 healthy white men and 2649 white women, age 15 to 98 y, by a previously validated 50-kHz bioelectrical impedance analysis equation. FFMI, BFMI, and %BF were calculated. RESULTS: FFMI values were 16.7 to 19.8 kg/m(2) for men and 14.6 to 16.8 kg/m(2) for women within the normal BMI ranges. BFMI values were 1.8 to 5.2 kg/m(2) for men and 3.9 to 8.2 kg/m(2) for women within the normal BMI ranges. BFMI values were 8.3 and 11.8 kg/m(2) in men and women, respectively, for obese BMI (>30 kg/m(2)). Normal ranges for %BF were 13.4 to 21.7 and 24.6 to 33.2 for men and women, respectively. CONCLUSION: BMI alone cannot provide information about the respective contribution of FFM or fat mass to body weight. This study presents FFMI and BFMI values that correspond to low, normal, overweight, and obese BMIs. FFMI and BFMI provide information about body compartments, regardless of height.
Resumo:
The aim of the present study was to compare, under the same nursing conditions, the energy-nitrogen balance and the protein turnover in small for gestational age (SGA) and appropriate for gestational age (AGA) low birthweight infants. We compared 8 SGA's (mean +/- s.d.: gestational age 35 +/- 2 weeks, birthweight 1520 +/- 330 g) to 11 AGA premature infants (32 +/- 2 weeks, birthweight 1560 +/- 240 g). When their rate of weight gain was above 15 g/kg/d (17.6 +/- 3.0 and 18.2 +/- 2.6 g/kg/d, mean postnatal age 18 +/- 10 and 20 +/- 9 d respectively) they were studied with respect to their metabolizable energy intake, their energy expenditure, their energy and protein gain and their protein turnover. Energy balance was assessed by the difference between metabolizable energy and energy expenditure as measured by indirect calorimetry. Protein gain was calculated from the amount of retained nitrogen. Protein turnover was estimated by a stable isotope enrichment technique using repeated nasogastric administration of 15N-glycine for 72 h. Although there was no difference in their metabolizable energy intakes (110 +/- 12 versus 108 +/- 11 kcal/kg/d), SGA's had a higher rate of resting energy expenditure (64 +/- 8 versus 57 +/- 8 kcal/kg/d, P less than 0.05). Protein gain and composition of weight gain was very similar in both groups (2.0 +/- 0.4 versus 2.1 +/- 0.4 g protein/kg/d; 3.5 +/- 1.1 versus 3.3 +/- 1.4 g fat/kg/d in SGA's and AGA's respectively). However, the rate of protein synthesis was significantly lower in SGA's (7.7 +/- 1.6 g/kg/d) as compared to AGA's (9.7 +/- 2.8 g/kg/d; P less than 0.05). It is concluded that SGA's have a more efficient protein gain/protein synthesis ratio since for the same weight and protein gains, SGA's show a 20 per cent slower protein turnover. They might therefore tolerate slightly higher protein intakes. Postconceptional age seems to be an important factor in the regulation of protein turnover.
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Resumo:
Body mass index (BMI) is related with cardiorespiratory fitness (CRF), but less is known regarding the combined relationships between BMI and body fat (BF) on CRF. Cross-sectional study included 2361 girls and 2328 boys aged 10–18 years living in the area of Lisbon, Portugal. BMI was calculated by measuring height and weight, and obesity was assessed by international criteria. BF was assessed by bioimpedance. CRF was assessed by the 20-m shuttle run and the participants were classified as normal-to-high or low-CRF level according to Fitness gram criterion-referenced standards. The prevalence of low CRF was 47 and 39% in girls and boys, respectively. The corresponding values for the prevalence of obesity were 4.8 and 5.6% (not significant) and of excess BF of 12.1 and 25.1% (P <0.001), respectively. In both sexes, BMI and BF were inversely related with CRF: r = – 0.53 and – 0.45 for BMI and % BF, respectively, in boys and the corresponding values in girls were – 0.50 and – 0.33 (all P <0.01). When compared with a participant with normal BMI and BF, the odds ratios (95% confidence interval) for low CRF were 1.94 (1.46–2.58) for a participant with normal BMI and high BF, and 6.19 (5.02–7.63) for a participant with high BMI and high BF. The prevalence of low-CRF levels is high in Portuguese youths. BF negatively influences CRF levels among children/adolescents with normal BMI.
Resumo:
BACKGROUND: In high-income countries, high socioeconomic status (SES) is generally associated with a healthier diet, but whether social differences in dietary intake are also present in low- and middle-income countries (LMICs) remains to be established. OBJECTIVE: We performed a systematic review of studies that assessed the relation between SES and dietary intake in LMICs. DESIGN: We carried out a systematic review of cohort and cross-sectional studies in adults in LMICs and published between 1996 and 2013. We assessed associations between markers of SES or urban and rural settings and dietary intake. RESULTS: A total of 33 studies from 17 LMICs were included (5 low-income countries and 12 middle-income countries; 31 cross-sectional and 2 longitudinal studies). A majority of studies were conducted in Brazil (8), China (6), and Iran (4). High SES or living in urban areas was associated with higher intakes of calories; protein; total fat; cholesterol; polyunsaturated, saturated, and monounsaturated fatty acids; iron; and vitamins A and C and with lower intakes of carbohydrates and fiber. High SES was also associated with higher fruit and/or vegetable consumption, diet quality, and diversity. Although very few studies were performed in low-income countries, similar patterns were generally observed in both LMICs except for fruit intake, which was lower in urban than in rural areas in low-income countries. CONCLUSIONS: In LMICs, high SES or living in urban areas is associated with overall healthier dietary patterns. However, it is also related to higher energy, cholesterol, and saturated fat intakes. Social inequalities in dietary intake should be considered in the prevention and control of noncommunicable diseases in LMICs.
Resumo:
ABSTRACT Fat oxidation kinetics: effect of exercise. During graded exercise, absolute whole body fat oxidation rates increase from low to moderate intensities, and then markedly decline at high intensities, implying an exercise intensity (Fatmax) at which the fat oxidation rate is maximal (MFO). The main aim of the present work was to examine the effect of exercise on whole body fat oxidation kinetics. For this purpose, a sinusoidal mathematical model (SIN) has been developped in the first study to provide an accurate description of the shape of fat oxidation kinetics during graded exercise, represented as a function of exercise intensity, and to determine Fatmax and MFO. The SIN model incorporates three independent variables (i.e., dilatation, symmetry, and translation) that correspond to main expected modulations of the basic fat oxidation curve because of factors such as mode of exercise or training status. The results of study 1 showed that the SIN model was a valuable tool to determine Fatmax and MFO, and to precisely characterize and quantify the different shape of fat oxidation kinetics through its three variables. The effectiveness of the SIN model to detect differences in fat oxidation kinetics induced by a specific factor was then confirmed in the second study, which quantitatively described and compared fat oxidation kinetics in two different popular modes of exercise: running and cycling. It was found that the mean fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with the symmetric parabolic curve in cycling. In the two subsequent studies, the effect of a prior endurance exercise of different intensities and durations on whole body fat oxidation kinetics was examined. Study 3 determined the impact of a 1-h continuous exercise bout at an exercise intensity corresponding to Fatmax on fat oxidation kinetics during a subsequent graded test, while study 4 investigated the effect of an exercise leading to a more pronounced muscle glycogen depletion. The results of these two latter studies showed that fat oxidation rates, MFO, and Fatmax were enhanced following endurance exercise, but were increased to a greater extent with a more severe mucle glycogen depletion, inducing therefore modifications in the postexercise fat oxidation kinetics (i.e., greater dilatation and rightward asymmetry). In perspective, further studies have been suggested 1) to assess physiological meaning of the three independent variables of the SIN model; and 2) to compare the effect of two different training programs on fat oxidation kinetics in obese subjects.
Resumo:
BACKGROUND: Polycystic ovary syndrome (PCOS) and gestational diabetes mellitus (GDM) are both characterized by an increase in insulin resistance. Our goal in the present study was to measure insulin resistance (as estimated by homeostasis model assessment, sex hormone-binding globulin (SHBG) and adiponectin concentrations) and parameters of low-grade inflammation in non-diabetic, non-hyperandrogenic ovulatory women with previous GDM (pGDM) and in non-diabetic women with classic PCOS, characterized by hyperandrogenism and oligo/anovulation. PATIENTS AND DESIGN: We evaluated 20 women with PCOS, 18 women with pGDM and 19 controls, all matched according to body mass index (BMI). Fasting blood samples were drawn in all women 3-6 days after spontaneous or dydrogesterone-induced withdrawal bleeding. Body fat distribution was assessed using dual-energy X-ray absorptiometry in all women. RESULTS: After adjusting for age and percent body fat, measures of insulin resistance such as SHBG and adiponectin concentrations were decreased and central obesity was increased in women with PCOS and pGDM compared with controls (all p < 0.05). Parameters of low-grade inflammation such as serum tumor necrosis factor-alpha and highly sensitive C-reactive protein concentrations, white blood cell and neutrophil count were increased only in women with PCOS compared with BMI-matched controls (all p < 0.05). CONCLUSIONS: Certain markers of insulin resistance are increased in both women with PCOS and women with pGDM, while low-grade inflammation is increased only in PCOS. PCOS and GDM might represent specific phenotypes of one disease entity with an increased risk of cardiovascular disease, whereby women with PCOS demonstrate an augmented cardiovascular risk profile.
Resumo:
BACKGROUND: Dairy calcium supplementation has been proposed to increase fat oxidation and to inhibit lipogenesis. OBJECTIVE: We aimed to investigate the effects of calcium supplementation on markers of fat metabolism. DESIGN: In a placebo-controlled, crossover experiment, 10 overweight or obese subjects who were low calcium consumers received 800 mg dairy Ca/d for 5 wk. After 4 wk, adipose tissue was taken for biopsy for analysis of gene expression. Respiratory exchange, glycerol turnover, and subcutaneous adipose tissue microdialysis were performed for 7 h after consumption of 400 mg Ca or placebo, and the ingestion of either randomized slow-release caffeine (SRC; 300 mg) or lactose (500 mg). One week later, the test was repeated with the SRC or lactose crossover. RESULTS: Calcium supplementation increased urinary calcium excretion by 16% (P = 0.017) but did not alter plasma parathyroid hormone or osteocalcin concentrations. Resting energy expenditure (59.9 +/- 3.0 or 59.6 +/- 3.3 kcal/h), fat oxidation (58.4 +/- 2.5 or 53.8 +/- 2.2 mg/min), plasma free fatty acid concentrations (0.63 +/- 0.02 or 0.62 +/- 0.03 mmol/L), and glycerol turnover (3.63 +/- 0.41 or 3.70 +/- 0.38 micromol . kg(-1) . min(-1)) were similar with or without calcium, respectively. SRC significantly increased free fatty acid concentrations, resting fat oxidation, and resting energy expenditure. During microdialysis, epinephrine increased dialysate glycerol concentrations by 250% without and 254% with calcium. Expression of 7 key metabolic genes in subcutaneous adipose tissue was not affected by calcium supplementation. CONCLUSION: Dairy calcium supplementation in overweight subjects with habitually low calcium intakes failed to alter fat metabolism and energy expenditure under resting conditions and during acute stimulation by caffeine or epinephrine
Resumo:
BACKGROUND AND AIMS: There is little information regarding the effect of different definitions of obesity on nutritional epidemiology. The aim was thus to assess: (a) the values of percentage of body fat (%BF) by gender and age; (b) the prevalence of obesity according to different %BF cut-offs; and (c) the sensitivity and specificity of BMI according to different %BF cut-offs used to define obesity. METHODS: Cross-sectional study on 2494 boys and 2519 girls aged 1018 years from the Lisbon area. %BF was measured using a hand-held device. In a sub sample of 211 boys and 724 girls %BF was assessed using skin folds. RESULTS: %BF levels were higher in girls and decreased with age in both genders. Prevalence of obesity varied considerably according to the %BF cut-off used: in boys, it ranged from 4.7% (age-specific 95th percentile) to 26.5% (fixed 25% cut-off), whereas by BMI it was 5.3%. In girls, prevalence of obesity ranged from 0.4% (age-specific BMI-derived %BF values) to 25.4% (fixed 30% cut-off), whereas by BMI it was 4.7%. The specificity of BMI criteria was over 95% irrespective of the %BF cut-off used; conversely, most sensitivities were below 40%. Sensitivities over 50% were obtained for the age-specific BMI-derived %BF values in boys and the age-specific 95th %BF percentile in both genders. Using %BF derived from the skin fold measurements leads to similar results. CONCLUSIONS: Prevalence of obesity varies considerably according to the %BF cut-off used. BMI cut-offs have a low sensitivity but a high specificity. Age- and gender-specific cut-offs for %BF should be used to define pediatric obesity.
Resumo:
OBJECTIVE: Body mass index does not discriminate body fat from fat-free mass or determine changes in these parameters with physical activity and aging. Body fat mass index (BFMI) and fat-free mass index (FFMI) permit comparisons of subjects with different heights. This study evaluated differences in body mass index, BFMI, and FFMI in physically active and sedentary subjects younger and older than 60 y and determined the association between physical activity, age, and body composition parameters in a healthy white population between ages 18 and 98 y. METHODS: Body fat and fat-free mass were determined in healthy white men (n = 3549) and women (n = 3184), between ages 18 and 98 y, by bioelectrical impedance analysis. BFMI and FFMI (kg/m2) were calculated. Physical activity was defined as at least 3 h/wk of endurance-type activity for at least 2 mo. RESULTS: Physically active as opposed to sedentary subjects were more likely to have a low BFMI (men: odds ratio [OR], 1.4; confidence interval [CI], 0.7-2.5; women: OR 1.9, CI 1.6-2.2) and less likely to have very high BFMI (men: OR, 0.2; CI, 0.1-0.2; women: OR, 0.1; CI, 0.02-0.2), low FFMI (men: OR, 0.5; CI, 0.3-0.9; women: OR, 0.7; CI, 0.6-0.9), or very high FFMI (men: OR, 0.6; CI, 0.4-0.8; women: OR, 0.7; CI, 0.5-1.0). Compared with subjects younger than 60 y, those older than 60 y were more like to have very high BFMI (men: OR, 6.5; CI, 4.5-9.3; women: OR, 14.0; CI, 9.6-20.5), and women 60 y and older were less likely to have a low BFMI (OR, 0.4; CI, 0.2-0.5). CONCLUSIONS: A clear association was found between low physical activity or age and height-normalized body composition parameters (BFMI and FFMI) derived from bioelectrical impedance analysis. Physically active subjects were more likely to have high or very high or low FFMI. Older subjects had higher body weights and BFMI.
Resumo:
BACKGROUND: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined. METHODOLOGY: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant. PRINCIPAL FINDINGS: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT. CONCLUSION: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity.
Resumo:
The aim of the present work was to study whole body protein synthesis and breakdown, as well as energy metabolism, in very low birth weight premature infants (less than 1500 g) during their rapid growth phase. Ten very low birth weight infants were studied during their first and second months of life. They received a mean energy intake of 114 kcal/kg X day and 3 g protein/kg X day as breast milk or milk formula. The average weight gain was 15 g/kg X day. The apparent energy digestibility was 88%, i.e. 99 kcal/kg X day. Their resting postprandial energy expenditure was 58 kcal/kg X day, indicating that 41 kcal/kg X day was retained. The apparent protein digestibility was 89%, i.e. 2.65 g/kg X day. Their rate of protein oxidation was 0.88 g/kg X day so that protein retention was 1.76 g/kg X day. There was a linear relationship between N retention and N intake (r = 0.78, p less than 0.001). The slope of the regression line indicates a net efficiency of N utilization of 67%. Estimates of body composition from the energy balance, coupled with N balance method, showed that 25% of the gain was fat and 75% was lean tissue. Whole body protein synthesis and breakdown were determined using repeated oral administration of 15N glycine for 60-72 h, and 15N enrichment in urinary urea was measured. Protein synthesis averaged 11.2 g/kg X day and protein breakdown 9.4 g/kg X day. Muscular protein breakdown, as estimated by 3-methylhistidine excretion, contributed to 12% of the total protein breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Various studies suggest that oxidative modifications of low density lipoprotein (LDL), and also other lipoproteins, have an important role in the development of atherosclerosis. In addition to the oxidation products formed endogenously, oxidised triacylglycerols (TAG) and oxysterols in the diet contribute to the oxidised lipoproteins found in circulation. However, studies on both the effect of oxidised dietary lipids on lipoprotein lipid oxidation and the reactions that modify oxidised fat after ingestion have been scarce. Studies on the effects of dietary antioxidants on the lipid oxidation in vivo and the risk of atherosclerosis have been inconclusive. More clinical trials are needed to test the importance of lipoprotein oxidation as a cardiovascular risk factor in humans. In the recent years, various methods have been optimised and applied to the analysis of lipid oxidation products in vivo, and information on the molecular structures of oxidised lipids in plasma, lipoproteins and atherosclerotic plaques has started to accumulate. However, specific structures of oxidised TAG molecules present in these tissues and lipoprotein fractions have not been investigated earlier. In the orginal research in this thesis, an approach based on highperformance liquid chromatographyelectrospray ionisationmass spectrometry (HPLCESIMS) and baseline diene conjugation (BDC) methods was used in order to investigate lipid oxidation level and oxidised TAG molecular structures in pig and human lipoproteins after dietary interventions. The approach was optimised with human LDL samples, which contained various oxidation products of TAG. LDL particles of hyperlipidaemic subjects contained an elevated amount of conjugated dienes. In the pig studies, several oxidised TAG structures with hydroxy, keto, epoxy or aldehydic groups were found in chylomicrons and VLDL after diets rich in sunflower seed oil. Also, the results showed that oxidised sunflower seed oil increased the oxidation of lipoprotein lipids and their TAG molecules. TAG hydroperoxides could be detected neither in the small intestinal mucosa of the pigs fed on the oxidised oil nor in their chylomicrons or VLDL.6 In the clinical studies, dietary flavonol aglycones extracted from sea buckthorn berries did not have an effect on lipoprotein lipid oxidation and other potential risk factors of atherosclerosis, but their absorption was demonstrated. Oil supplementation seemed to increase the bioavailability of the flavonols. Oxidised TAG molecules were detected in LDL particles of the subjects after both flavonol and control diets.
Resumo:
Chicken is the most widely consumed meat all over the world due to chickens being easy to rear, their fast growth rate and the meat having good nutritional characteristics. The main objective of this paper was to study the effects of dietary fatty by-products in low, medium and high levels of oxidized lipids and trans fatty acids (TFAs) on the contents of cholesterol and oxycholesterols in meat, liver, and plasma of chickens. A palm fatty acid distillate, before and after hydrogenation, and a sunflower-olive oil blend (70/30, v/v) before and after use in a commercial frying process were used in feeding trials after adding 6% of the fats to the feeds. Highly oxidized lipid and TFA feeds significantly increased the contents of cholesterol and oxycholesterols in all tissues of chicken (0.01 < p <= 0.05). The contents of oxycholesterols in chicken meat, liver and plasma obtained from TFA feeding trials varied between 17 and 48 μg/100 g in meat, 19-42 μg/100 g in liver and 105-126 μg/dL in plasma. In contrast, in the oxidized lipid feeding trials, oxycholesterols varied between 13 and 75 μg/100 g in meat, 30-58 μg/100 g in liver and 66-209 μg/dL in plasma. Meat from chickens fed with feeds containing high levels of TFAs or oxidized lipids may contribute to higher ingestion of cholesterol and oxycholesterols by humans.