949 resultados para low dose irradiation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The time course of mild cardiotoxicity induced by anthracycline remains unknown. The aim of this study was to evaluate the long-term evolution of decreased myocardial reserve in children previously treated with a cumulative dose of anthracycline up to 100mg/m 2. Patients and Methods: Twenty-seven asymptomatic cancer survival patients (25 with lymphoblastic leukemia), in continuous remission and off treatment for >12 months with no alterations in conventional echocardiograms were evaluated by exercise echocardiography at 37±15.4 months (T1) and 101±24 months (T2) after finishing treatment (ADRIA group). This group was compared with 25 healthy individuals (control group) similar to the ADRIA group with respect to age and body surface area (BSA). All individuals underwent treadmill exercise testing according to Bruce protocol. Echocardiograms were performed before and immediately after exercise. Results: The groups were similar regarding cardiac structure and left ventricular (LV) systolic function at rest at T1 and T2. The growth of LV posterior wall thickness related to BSA was lower in the ADRIA group at T2. Post exercise, smaller LV ejection indexes and attenuated changes in the afterload in ADRIA group were observed at T1 and T2. Conclusion: The decreased systolic reserve induced by a low dose of anthracycline in asymptomatic children and adolescents remains unaffected over a 5-year period, suggesting that positive outcomes in chronic cardiotoxicity would be expected in patients with mild impairment after anthracycline treatment. © 2011 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB
Resumo:
The food dye tartrazine (CI 19140) was exposed to UV irradiation from an artificial source, a mercury vapor lamp, and a natural one, sunlight. It was observed that conditions such as energy dose, irradiation time, pH and initial dye concentration affected its discoloration. There was 100% of color removal, after 30 min of irradiation, when a dye solution 1 x 10(-5) mol L-1 was submitted to an energy dose of 37.8 J cm(-2). Liquid Chromatography coupled to Diode Array Detection and Mass Spectrometry confirmed the cleavage of the chromophore group and the formation of five by-products at low concentration. Although by-products were formed, the Salmonella/microsome mutagenicity assay performed for both, the dye solution at a dose of 5.34 mg/plate and the solutions obtained after exposure to UV irradiation, did not present mutagenic activity for TA98 and TA100 with and without S9. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.
Resumo:
BACKGROUND: Acute endotoxinemia elicits an early fibrinolytic response. This study analyzes the effects of the dose and duration of endotoxin infusion on arterial levels of tissue-type plasminogen activator (tPA) and pulmonary, mesenteric and hepatic plasma tPA fluxes. METHODS: Pigs were randomized to receive an acute, high-dose (for 6 h, n=13, high ETX) or a prolonged, low-dose (for 18 h, n=18, low ETX) infusion of endotoxin or saline vehicle alone (for 18 h, n=14, control). All animals were fluid resuscitated to maintain a normodynamic circulation. Systemic and regional blood flows were measured and arterial, pulmonary arterial, portal and hepatic venous blood samples were analyzed to calculate regional net fluxes of tPA. Plasma tumor necrosis factor (TNF-alpha) levels were analyzed. RESULTS: Mesenteric tPA release and hepatic uptake increased maximally at 1.5 h in ETX groups related to dose. Maximal mesenteric tPA release [high ETX 612 (138-1185) microg/min/kg, low ETX 72 (32-94) microg/min/kg, median+/-interquartile range] and hepatic tPA uptake [high ETX -1549 (-1134 to -2194) microg/min/kg, low ETX -153 (-105 to -307) microg/min/kg] correlated to TNF-alpha levels. Regional tPA fluxes returned to baseline levels at 6 h in both ETX groups and also remained low during sustained low ETX. No changes were observed in control animals. CONCLUSIONS: Endotoxemia induces an early increase in mesenteric tPA release and hepatic tPA uptake related to the severity of endotoxemia. The time patterns of changes in mesenteric and hepatic tPA fluxes are similar in acute high-dose endotoxemia and sustained low-dose endotoxemia.
Resumo:
In external beam radiotherapy, electronic portal imaging becomes more and more an indispensable tool for the verification of the patient setup. For the safe clinical introduction of high dose conformal radiotherapy like intensity modulated radiation therapy, on-line patient setup verification is a prerequisite to ensure that the planned dosimetric coverage of the tumor volume is actually realized in the patient. Since the direction of setup fields often deviates from the direction of the treatment beams, extra dose is delivered to the patient during the acquisition of these portal images which may reach clinical relevance. The aim of this work was to develop a new acquisition mode for the PortalVision aS500 electronic portal imaging device from Varian Medical Systems that allows one to take portal images with reduced dose while keeping good image quality. The new acquisition mode, called RadMode, selectively enables and disables beam pulses during image acquisition allowing one to stop wasting valuable dose during the initial acquisition of "reset frames." Images of excellent quality can be taken with 1 MU only. This low dose per image facilitates daily setup verification with considerably reduced extra dose.
Resumo:
BACKGROUND: Antiretroviral therapy (ART) containing tenofovir disoproxil fumarate (TDF) and didanosine (ddI) has been associated with poor immune recovery despite virologic success. This effect might be related to ddI toxicity since ddI exposure is substantially increased by TDF. OBJECTIVE: To analyze whether immune recovery during ART with TDF and ddI is ddI-dose dependent. DESIGN AND METHODS: A retrospective longitudinal analysis of immune recovery measured by the CD4 T-cell slope in 614 patients treated with ART containing TDF with or without ddI. Patients were stratified according to the tertiles of their weight-adjusted ddI dose: low dose (< 3.3 mg/kg), intermediate dose (3.3-4.1 mg/kg) and high dose (> 4.1 mg/kg). Cofactors modifying the degree of immune recovery after starting TDF-containing ART were identified by univariable and multivariable linear regression analyses. RESULTS: CD4 T-cell slopes were comparable between patients treated with TDF and a weight-adjusted ddI-dose of < 4.1 mg/kg per day (n = 143) versus TDF-without-ddI (n = 393). In the multivariable model the slopes differed by -13 CD4 T cells/mul per year [95% confidence interval (CI), -42 to 17; P = 0.40]. In contrast, patients treated with TDF and a higher ddI dose (> 4.1 mg/kg per day, n = 78) experienced a significantly impaired immune recovery (-47 CD4 T cells/microl per year; 95% CI, -82 to -12; P = 0.009). The virologic response was comparable between the different treatment groups. CONCLUSIONS: Immune recovery is impaired, when high doses of ddI (> 4.1 mg/kg) are given in combination with TDF. If the dose of ddI is adjusted to less than 4.1 mg/kg per day, immune recovery is similar to other TDF-containing ART regimen.
Resumo:
Fluconazole is effective in the therapy of cryptococcal meningitis in patients with AIDS. The optimal dosage of fluconazole and the impact of combination with flucytosine are not known. In this study, rabbits with experimental cryptococcal meningitis were given fluconazole at low, intermediate, or high dose or in combination with a low or intermediate dose of flucytosine. Serial cerebrospinal fluid (CSF) examinations showed that all three doses of fluconazole and low-dose fluconazole in combination with intermediate-dose flucytosine were effective in reducing CSF cryptococcal titer, lactate, white blood cell count, and cryptococcal antigen (CRAG) titers. The intermediate and high doses of fluconazole reduced CSF fungal (P < .05) and CRAG (P < .001) titers earlier than low-dose fluconazole alone or in combination with flucytosine. Only the highest dose of fluconazole reduced brain edema after 7 days. In this model of cryptococcal meningitis, there was evidence of a dose response with fluconazole but no in vivo synergism with flucytosine.
Resumo:
BACKGROUND AND PURPOSE: Computer-assisted navigation is increasingly used in functional endoscopic sinus surgery (FESS) to prevent injury to vital structures, necessitating preparative CT and, thus, radiation exposure. The purpose of our study was to investigate currently used radiation doses for CT in computer-assisted navigation in sinus surgery (CAS-CT) and to assess minimal doses required. MATERIALS AND METHODS: A questionnaire inquiring about dose parameters used for CAS-CT was sent to 30 radiologic institutions. The feasibility of low-dose registration was tested with a phantom. The influence of CAS-CT dose on technical accuracy and on the practical performance of 5 ear, nose, and throat (ENT) surgeons was evaluated with cadaver heads. RESULTS: The questionnaire response rate was 63%. Variation between minimal and maximal dose used for CAS-CT was 18-fold. Phantom registration was possible with doses as low as 1.1 mGy. No dose dependence on technical accuracy was found. ENT surgeons were able to identify anatomic landmarks on scans with a dose as low as 3.1 mGy. CONCLUSIONS: The vast dose difference between institutions mirrors different attitudes toward image quality and radiation-protection issues rather than being technically founded, and many patients undergo CAS-CT at higher doses than necessary. The only limit for dose reduction in CT for computer-assisted endoscopic sinus surgery is the ENT surgeon's ability to cope with impaired image quality, whereas there is no technically justified lower dose limit. We recommend, generally, doses used for the typical diagnostic low-dose sinus CT (120 kV/20-50 mAs). When no diagnostic image quality is needed, even a reduction down to a third is possible.
Resumo:
BACKGROUND: Lodox-Statscan is a whole-body, skeletal and soft-tissue, low-dose X-ray scanner Anterior-posterior and lateral thoraco-abdominal studies are obtained in 3-5 minutes with only about one-third of the radiation required for conventional radiography. Since its approval by the Food and Drug Administration (FDA) in the USA, several trauma centers have incorporated this technology into their Advanced Trauma Life Support protocols. This review provides a brief overview of the system, and describes the authors' own experience with the system. METHODS: We performed a PubMed search to retrieve all references with 'Lodox' and 'Stat-scan' used as search terms. We furthermore used the google search engine to identify existing alternatives. To the best of our knowledge, this is the only FDA-approved device of its kind currently used in trauma. RESULTS AND CONCLUSION: The intention of our review has been to sensitize the readership that such alternative devices exist. The key message is that low dosage full body radiography may be an alternative to conventional resuscitation room radiography which is usually a prelude to CT scanning (ATLS algorithm). The combination of both is radiation intensive and therefore we consider any reduction of radiation a success. But only the future will show whether LS will survive in the face of low-dose radiation CT scanners and magnetic resonance imaging devices that may eventually completely replace conventional radiography.
Resumo:
We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.
Resumo:
BACKGROUND We describe the long-term outcome after clinical introduction and dose escalation of somatostatin receptor targeted therapy with [90Y-DOTA]-TOC in patients with metastasized neuroendocrine tumors. METHODS In a clinical phase I dose escalation study we treated patients with increasing [90Y-DOTA]-TOC activities. Multivariable Cox regression and competing risk regression were used to compare efficacy and toxicities of the different dosage protocols. RESULTS Overall, 359 patients were recruited; 60 patients were enrolled for low dose (median: 2.4 GBq/cycle, range 0.9-7.8 GBq/cycle), 77 patients were enrolled for intermediate dose (median: 3.3 GBq/cycle, range: 2.0-7.4 GBq/cycle) and 222 patients were enrolled for high dose (median: 6.7 GBq/cycle, range: 3.7-8.1 GBq/cycle) [90Y-DOTA]-TOC treatment. The incidences of hematotoxicities grade 1-4 were 65.0%, 64.9% and 74.8%; the incidences of grade 4/5 kidney toxicities were 8.4%, 6.5% and 14.0%, and the median survival was 39 (range: 1-158) months, 34 (range: 1-118) months and 29 (range: 1-113) months. The high dose protocol was associated with an increased risk of kidney toxicity (Hazard Ratio: 3.12 (1.13-8.59) vs. intermediate dose, p = 0.03) and a shorter overall survival (Hazard Ratio: 2.50 (1.08-5.79) vs. low dose, p = 0.03). CONCLUSIONS Increasing [90Y-DOTA]-TOC activities may be associated with increasing hematological toxicities. The dose related hematotoxicity profile of [90Y-DOTA]-TOC could facilitate tailoring [90Y-DOTA]-TOC in patients with preexisting hematotoxicities. The results of the long-term outcome suggest that fractionated [90Y-DOTA]-TOC treatment might allow to reduce renal toxicity and to improve overall survival. (ClinicalTrials.gov number NCT00978211).