969 resultados para late Holocene change


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 cal kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0-11 cal kyr BP) annual accumulation of 194,106 t/yr of total sediment for the whole Kara Sea. Based on late Holocene (modern) sediment accumulation in the estuaries, probably 12,106 t/yr of riverine suspended matter (i.e. about 30% of the input) may escape the marginal filter on a geological time scale and is transported onto the open Kara Sea shelf. The high-resolution magnetic susceptibility record of a Yenisei core suggests a short-term variability in Siberian climate and river discharge on a frequency of 300-700 yr. This variability may reflect natural cyclic climate variations to be seen in context with the interannual and interdecadal environmental changes recorded in the High Northern Latitudes over the last decades, such as the NAO/AO pattern. A major decrease in MS values starting near 2.5 cal kyr BP, being more pronounced during the last about 2 cal kyr BP, correlates with a cooling trend over Greenland as indicated in the GISP-2 Ice Core, extended sea-ice cover in the North Atlantic, and advances of glaciers in western Norway. Our still preliminary interpretation of the MS variability has to be proven by further MS records from additional cores as well as other high-resolution multi-proxy Arctic climate records.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paleoproductivity, paleo-oxygenation, and paleohydrographic configuration of the southeastern Mediterranean during the late Holocene was reconstructed on the basis of the isotopic composition of the epibenthic Heterolepa floridana, shallow-endobenthic Uvigerina mediterranea, and the deeper endobenthic Bulimina inflata from two high-resolution cores GA-112 (470 m) and GA-110 (670 m). The Delta d13C between H. floridana and U. mediterranea reveals four intervals of enhanced productivity, from 3.3-2.6, 2.3-1.9, 1.5-1.1, and 0.8-0.4 kyr BP, coinciding with increased nutrient supply by the Nile River. The entire basin was well aerated, with oxygen consumption varying between 1.0 and 3.5 mL O2/L. Oxygen consumption increases toward present day, probably because of higher accumulation of total organic carbon at 1.7 kyr BP, coinciding with the appearance of the mesotropic benthic species. The hydrographic configuration of the basin has changed during the course of the last 3.75 kyr. The Levantine Intermediate Water (LIW) deepens below 470 m between 3.3 and 2.0 kyr, and especially between 2.5 and 2.0 kyr. During the last 1.5 kyr, the LIW becomes shallower than 470 m, similar to the present day. The change in the hydrographic configuration reflects changes in evaporation/precipitation ratio and in temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Material and data were collected at 41 sites in the subpolar North Atlantic Ocean between Scotland and Newfoundland, during the RRS CharlesDarwin CD159 cruise in July 2004 (McCave, 2005). Sites were selected to reflect the major inputs of water that becomes the North Atlantic Deep Water (NADW); the Iceland-Scotland Overflow Water (ISOW), the Denmark Strait Overflow Water (DSOW) and the Labrador Sea Water (LSW). Areas cored were the south Iceland Rise, SE Greenland slope/rise and Eirik Drift, and the Labrador margin. A total of 29 box cores, 19 piston cores, 6 kasten cores, 9 short gravity cores and 20 CTD casts as well as 28 surface water samples were collected during the cruise. Here we present sediment core-top sample ages. The cores were sampled at 1 or 0.5 cm intervals and we used the top 1 or 2 cm, depending on availability of foraminifera in the samples. Sediment samples were disaggregated on an end-over-end wheel, wet sieved at >63 um, and dry sieved to 63-150 and >150 um. Accelerator Mass Spectrometer (AMS) radiocarbon dating was done for each core top based on between 900-1600 monospecific planktonic foraminifera (Globigerina bulloides or Neogloboquadrina pachyderma (sinistral)). All dates were of modern or late Holocene age except site RAPID-08-5B (9806 ± 38 uncorrected 14C years BP) and site RAPID-14-10B (11543 ± 40 uncorrected 14C years BP). The >150 um fraction was split until approximately 300 foraminifera remained and counted for number of lithic grains, benthic foraminifera, planktonic foraminifera and foraminifera fragments. In all but the shallowest sample (Greenland rise, 761m water depth) benthic foraminifera constituted less than 2% of the total >150 um fraction of the sample.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present three new benthic foraminiferal delta13C, delta18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial delta13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) delta13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [per mil VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic delta13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4-0 ka) and LGM (22-16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air-sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed d13CDIC values of glacial circumantarctic deep water of approximately 0.3 per mil to 0.4 per mil. Our reconstruction brings Atlantic and Southern Ocean d13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic delta18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Twelve Late Quaternary TIMS U-Th ages are reported here from 10 coral samples collected in situ from five transgressive coral/algal raised reefs (height: max. 113 m, min. 8 m) and two raised lagoonal deposits (height: max. 18 m, min. 8 m) along and near the west coast of Tanna, which lies in the Median Sedimentary Basin of South Vanuatu, southwest Pacific. These reefs and raised lagoonal deposits represent several age groups: (i) 215 ka (marine oxygen-isotope stage 7) penultimate interglacial (highest elevation and oldest); (ii) one lagoonal deposit of ca 127 ka (marine oxygen-isotope stage 5e); (iii) three last interglacial reefs with ages 102, 89 and 81 ka (representing marine oxygen-isotope stages 5c, 5b and 5a, respectively, of the latter part of the last interglacial); (iv) a lagoonal deposit with a 92 ka age (5b); and (v) a Holocene reef (age >5.7-5.0 ka) (lowest elevation and youngest). A ca 4.9 ka regressive reef (at elevation of 1.5 m above sea-level) is consistent with an island-wide 6.5 m uplift (probably largely coseismic), and a probable further island-wide uplift occurred in the late Holocene. The U-series ages taken together with the heights of transgressive reefs show that uplift since 215 ka was, on average, at similar to0.52 mm/y; although since 5 ka the uplift rate was, on average, similar to1.6 mm/y (the assumption being that a 1.5 m above sea-level reef has a coseismic origin). Elevation of transgressive reefs 5a, 5b and 5c and their ages indicates an island-wide subsidence during the period ?124-89 ka (i.e. Late Quaternary uplift/subsidence was jerky). Late Quaternary uplift/subsidence on the northwest coast of Tanna is considered to be due to irregular thicknesses of crust being subducted beneath Tanna.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA phi(ST) = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT phi(ST) = 0.39, URST = 0.02; NQ phi(ST) = 0.60, URST = -0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.