916 resultados para land cover change
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
Resumo:
Remote detection of management-related trend in the presence of inter-annual climatic variability in the rangelands is difficult. Minimally disturbed reference areas provide a useful guide, but suitable benchmarks are usually difficult to identify. We describe a method that uses a unique conceptual framework to identify reference areas from multitemporal sequences of ground cover derived from Landsat TM and ETM+ imagery. The method does not require ground-based reference sites nor GIS layers about management. We calculate a minimum ground cover image across all years to identify locations of most persistent ground cover in years of lowest rainfall. We then use a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. This difference estimates ground-cover change between successive below-average rainfall years, which provides a seasonally interpreted measure of management effects. We examine the approach's sensitivity to window size and to cover-index percentiles used to define persistence. The method successfully detected management-related change in ground cover in Queensland tropical savanna woodlands in two case studies: (1) a grazing trial where heavy stocking resulted in substantial decline in ground cover in small paddocks, and (2) commercial paddocks where wet-season spelling (destocking) resulted in increased ground cover. At a larger scale, there was broad agreement between our analysis of ground-cover change and ground-based land condition change for commercial beef properties with different a priori ratings of initial condition, but there was also some disagreement where changing condition reflected pasture composition rather than ground cover. We conclude that the method is suitably robust to analyse grazing effects on ground cover across the 1.3 x 10(6) km(2) of Queensland's rangelands. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.
Resumo:
Despite high vulnerability, the impact of climate change on Himalayan ecosystem has not been properly investigated, primarily due to the inadequacy of observed data and the complex topography. In this study, we mapped the current vegetation distribution in Kashmir Himalayas from NOAA AVHRR and projected it under A1B SRES, RCP-4.5 and RCP-8.5 climate scenarios using the vegetation dynamics model-IBIS at a spatial resolution of 0.5A degrees. The distribution of vegetation under the changing climate was simulated for the 21st century. Climate change projections from the PRECIS experiment using the HADRM3 model, for the Kashmir region, were validated using the observed climate data from two observatories. Both the observed as well as the projected climate data showed statistically significant trends. IBIS was validated for Kashmir Himalayas by comparing the simulated vegetation distribution with the observed distribution. The baseline simulated scenario of vegetation (1960-1990), showed 87.15 % agreement with the observed vegetation distribution, thereby increasing the credibility of the projected vegetation distribution under the changing climate over the region. According to the model projections, grasslands and tropical deciduous forests in the region would be severely affected while as savannah, shrubland, temperate evergreen broadleaf forest, boreal evergreen forest and mixed forest types would colonize the area currently under the cold desert/rock/ice land cover types. The model predicted that a substantial area of land, presently under the permanent snow and ice cover, would disappear by the end of the century which might severely impact stream flows, agriculture productivity and biodiversity in the region.
Resumo:
Four models are employed in the landscape change detection of the newly created wetland. The models include ones for patch connectivity. ecological diversity, human impact intensity and mean center of land cover. The landscape data of the newly created wetland in Yellow River Delta in 1984, 1991, and 1996 are produced from the unsupervised classification and the supervised classification on the basis of integrating Landsat TM images of the newly created wetland in the four seasons of the each year. The result from operating the models into the data shows that the newly created wetland landscape in Yellow River Delta had a great chance. The driving focus of the change are mainly from natural evolution of the newly created wetland and rapid population growth, especially non-peasant population growth in Yellow River Delta because a considerable amount of oil and gas fields have been found in the Yellow River Delta. For preventing the newly created wetland from more destruction and conserving benign Succession of the ecosystems in the newly created wetland, six measures are suggested on the basis of research results. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Rapid urbanization and industrialization in southern Jiangsu Province have consumed a huge amount of arable land. Through comparative analysis of land cover maps derived from TM images in 1990, 2000 and 2006, we identified the trend of arable land loss. It is found that most arable land is lost to urbanization and rural settlements development. Urban settlements, rural settlements, and industrial park-mine-transport land increased, respectively, by 87 997 ha (174.65%), 81 041 ha (104.52%), and 12 692 ha (397.99%) from 1990 to 2006. Most of the source (e.g., change from) land covers are rice paddy fields and dryland. These two covers contributed to newly urbanized areas by 37.12% and 73.52% during 1990-2000, and 46.39% and 38.86% during 2000-2006. However, the loss of arable land is weakly correlated with ecological service value, per capita net income of farmers, but positively with grain yield for some counties. Most areas in the study site have a low arable land depletion rate and a high potential for sustainable development. More attention should be directed at those counties that have a high depletion rate but a low potential for sustainable development. Rural settlements should be controlled and rationalized through legislative measures to achieve harmonious development between urban and rural areas, and sustainable development for rural areas with a minimal impact on the ecoenvironment. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization.
Resumo:
Observations of Earth from space have been made for over 40 years and have contributed to advances in many aspects of climate science. However, attempts to exploit this wealth of data are often hampered by a lack of homogeneity and continuity and by insufficient understanding of the products and their uncertainties. There is, therefore, a need to reassess and reprocess satellite datasets to maximize their usefulness for climate science. The European Space Agency has responded to this need by establishing the Climate Change Initiative (CCI). The CCI will create new climate data records for (currently) 13 essential climate variables (ECVs) and make these open and easily accessible to all. Each ECV project works closely with users to produce time series from the available satellite observations relevant to users' needs. A climate modeling users' group provides a climate system perspective and a forum to bring the data and modeling communities together. This paper presents the CCI program. It outlines its benefit and presents approaches and challenges for each ECV project, covering clouds, aerosols, ozone, greenhouse gases, sea surface temperature, ocean color, sea level, sea ice, land cover, fire, glaciers, soil moisture, and ice sheets. It also discusses how the CCI approach may contribute to defining and shaping future developments in Earth observation for climate science.
Resumo:
Aim To examine the effect of climate change on the occurrence and distribution of Pipistrellus nathusii (Nathusius' pipistrelle) in the United Kingdom (UK).Location We modelled habitat and climatic associations of P. nathusii in the UK and applied this model to the species' historical range in continental Europe.Methods A binomial logistic regression model was constructed relating the occurrence of P. nathusii to climate and habitat characteristics using historical species occurrence records (1940-2006) and CORINE land cover data. This model was applied to historical and projected climate data to examine changes in suitable range (1940-2080) of this species. We tested the predictive ability of the model with known records in the UK after 2006 and applied the model to the species' known range in Europe.Results The distribution of P. nathusii was related positively to the area of water bodies, woodland and small areas of urbanization, and negatively related to the area of peat/heathland. Species records were associated with higher minimum temperatures, low seasonal variation in temperature and intermediate rainfall. We found that suitable areas have existed in the UK since the 1940s and that these have expanded. The model had high predictive power when applied to new records after 2006, with a correct classification rate of 70%, estimated by receiver operating characteristic analysis. Based on climate projections, our model suggests a potential twofold increase in the area suitable for P. nathusii in the UK by 2050. The single most influential climate variable contributing to range increase was the projected increase in minimum temperature. When applied to Europe, the model predictions had best predictive capability of known records in western areas of the species' range, where P. nathusii is present during the winter.Main conclusions We show that a mobile, migratory species has adapted its range in response to recent climate change on a continental scale. We believe this may be the first study to demonstrate a case of range change linked to contemporary climate change in a mammal species in Europe.
Resumo:
The cumulative effects of global change, including climate change, increased population density and domestic waste disposal, effluent discharges from industrial processes, agriculture and aquaculture will likely continue and increases the process of eutrophication in estuarine environments. Eutrophication is one of the leading causes of degraded water quality, water column hypoxia/anoxia, harmful algal bloom (HAB) and loss of habitat and species diversity in the estuarine environment. The present study attempts to characterize the trophic condition of coastal estuary using a simple tool; trophic index (TRIX) based on a linear combination of the log of four state variables with supplementary index Efficiency Coefficient (Eff. Coeff.) as a discriminating tool. Numerically, the index TRIX is scaled from 0 to10, covering a wide range of trophic conditions from oligotrophic to eutrophic. Study area Kodungallur-Azhikode Estuary (KAE) was comparatively shallow in nature with average depth of 3.6±0.2 m. Dissolve oxygen regime in the water column was ranged from 4.7±1.3 mgL−1 in Station I to 5.9±1.4 mgL−1 in Station IV. The average nitrate-nitrogen (NO3-N) of KAE water was 470 mg m−3; values ranged from Av. 364.4 mg m−3 at Station II to Av. 626.6 mg m−3at Station VII. The mean ammonium-nitrogen (NH4 +-N) varied from 54.1 mg m−3 at Station VII to 101 mg m−3 at Station III. The average Chl-a for the seven stations of KAE was 6.42±3.91 mg m−3. Comparisons over different spatial and temporal scales in the KAE and study observed that, estuary experiencing high productivity by the influence of high degree of eutrophication; an annual average of 6.91 TRIX was noticed in the KAE and seasonal highest was observed during pre monsoon period (7.15) and lowest during post monsoon period (6.51). In the spatial scale station V showed high value 7.37 and comparatively low values in the station VI (6.93) and station VII (6.96) and which indicates eutrophication was predominant in land cover area with comparatively high water residence time. Eff. Coeff. values in the KAE ranges from −2.74 during monsoon period to the lowest of −1.98 in pre monsoon period. Present study revealed that trophic state of the estuary under severe stress and the restriction of autochthonous and allochthonous nutrient loading should be keystone in mitigate from eutrophication process
Resumo:
The 21st century has brought new challenges for forest management at a time when globalization in world trade is increasing and global climate change is becoming increasingly apparent. In addition to various goods and services like food, feed, timber or biofuels being provided to humans, forest ecosystems are a large store of terrestrial carbon and account for a major part of the carbon exchange between the atmosphere and the land surface. Depending on the stage of the ecosystems and/or management regimes, forests can be either sinks, or sources of carbon. At the global scale, rapid economic development and a growing world population have raised much concern over the use of natural resources, especially forest resources. The challenging question is how can the global demands for forest commodities be satisfied in an increasingly globalised economy, and where could they potentially be produced? For this purpose, wood demand estimates need to be integrated in a framework, which is able to adequately handle the competition for land between major land-use options such as residential land or agricultural land. This thesis is organised in accordance with the requirements to integrate the simulation of forest changes based on wood extraction in an existing framework for global land-use modelling called LandSHIFT. Accordingly, the following neuralgic points for research have been identified: (1) a review of existing global-scale economic forest sector models (2) simulation of global wood production under selected scenarios (3) simulation of global vegetation carbon yields and (4) the implementation of a land-use allocation procedure to simulate the impact of wood extraction on forest land-cover. Modelling the spatial dynamics of forests on the global scale requires two important inputs: (1) simulated long-term wood demand data to determine future roundwood harvests in each country and (2) the changes in the spatial distribution of woody biomass stocks to determine how much of the resource is available to satisfy the simulated wood demands. First, three global timber market models are reviewed and compared in order to select a suitable economic model to generate wood demand scenario data for the forest sector in LandSHIFT. The comparison indicates that the ‘Global Forest Products Model’ (GFPM) is most suitable for obtaining projections on future roundwood harvests for further study with the LandSHIFT forest sector. Accordingly, the GFPM is adapted and applied to simulate wood demands for the global forestry sector conditional on selected scenarios from the Millennium Ecosystem Assessment and the Global Environmental Outlook until 2050. Secondly, the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model is utilized to simulate the change in potential vegetation carbon stocks for the forested locations in LandSHIFT. The LPJ data is used in collaboration with spatially explicit forest inventory data on aboveground biomass to allocate the demands for raw forest products and identify locations of deforestation. Using the previous results as an input, a methodology to simulate the spatial dynamics of forests based on wood extraction is developed within the LandSHIFT framework. The land-use allocation procedure specified in the module translates the country level demands for forest products into woody biomass requirements for forest areas, and allocates these on a five arc minute grid. In a first version, the model assumes only actual conditions through the entire study period and does not explicitly address forest age structure. Although the module is in a very preliminary stage of development, it already captures the effects of important drivers of land-use change like cropland and urban expansion. As a first plausibility test, the module performance is tested under three forest management scenarios. The module succeeds in responding to changing inputs in an expected and consistent manner. The entire methodology is applied in an exemplary scenario analysis for India. A couple of future research priorities need to be addressed, particularly the incorporation of plantation establishments; issue of age structure dynamics; as well as the implementation of a new technology change factor in the GFPM which can allow the specification of substituting raw wood products (especially fuelwood) by other non-wood products.
Resumo:
Jerdon's Courser Rhinoptilus bitorquatus is one of the most endangered and least understood birds in the world. It is endemic to scrub habitats in southeast India which have been lost and degraded because of human land use. We used satellite images from 1991 and 2000 and two methods for classifying land cover to quantify loss of Jerdon's Courser habitat. The scrub habitats on which this species depends decreased in area by 11-15% during this short period (9.6 years), predominantly as a result of scrub clearance and conversion to agriculture. The remaining scrub patches were smaller and further from human settlements in 2000 than in 1991, implying that much of the scrub loss had occurred close to human population centres. We discuss the implications of our results for the conservation of Jerdon's Courser and the use of remote sensing methods in conservation.
Resumo:
Declining biodiversity in agro-ecosystems, caused by intensification of production or expansion of monocultures, is associated with the emergence of agricultural pests. Understanding how land-use and management control crop-associated biodiversity is, therefore, one of the key steps towards the prediction and maintenance of natural pest-control. Here we report on relationships between land-use variables and arthropod community attributes (for example, species diversity, abundance and guild structure) across a diversification gradient in a rice-dominated landscape in the Mekong delta, Vietnam. We show that rice habitats contained the most diverse arthropod communities, compared with other uncultivated and cultivated land-use types. In addition, arthropod species density and Simpson's diversity in flower, vegetable and fruit habitats was positively related to rice cover in the local landscape. However, across the landscape as a whole, reduction in heterogeneity and the amount of uncultivated cover was associated, generally, with a loss of diversity. Furthermore, arthropod species density in tillering and flowering stages of rice was positively related to crop and vegetation richness, respectively, in the local landscape. Differential effects on feeding guilds were also observed in rice-associated communities with the proportional abundance of predators increasing and the proportional abundance of detritivores decreasing with increased landscape rice cover. Thus, we identify a range of rather complex, sometimes contradictory patterns concerning the impact of rice cover and landscape heterogeneity on arthropod community attributes. Importantly, we conclude that that land-use change associated with expansion of monoculture rice need not automatically impact diversity and functioning of the arthropod community.
Resumo:
Floods are a major threat to human existence and historically have both caused the collapse of civilizations and forced the emergence of new cultures. The physical processes of flooding are complex. Increased population, climate variability, change in catchment and channel management, modified landuse and land cover, and natural change of floodplains and river channels all lead to changes in flood dynamics, and as a direct or indirect consequence, social welfare of humans. Section 5.16.1 explores the risks and benefits brought about by floods and reviews the responses of floods and floodplains to climate and landuse change. Section 5.08.2 reviews the existing modeling tools, and the top–down and bottom–up modeling frameworks that are used to assess impacts on future floods. Section 5.08.3 discusses changing flood risk and socioeconomic vulnerability based on current trends in emerging or developing countries and presents an alternative paradigm as a pathway to resilience. Section 5.08.4 concludes the chapter by stating a portfolio of integrated concepts, measures, and avant-garde thinking that would be required to sustainably manage future flood risk.