920 resultados para intra-epithelial neoplasia
Resumo:
Globally, lung cancer accounts for approximately 20% of all cancer related deaths. Five-year survival is poor and rates have remained unchanged for the past four decades. There is an urgent need to identify markers of lung carcinogenesis and new targets for therapy. Given the recent successes of immune modulators in cancer therapy and the improved understanding of immune evasion by tumours, we sought to determine the carcinogenic impact of chronic TNF-α and IL-1β exposure in a normal bronchial epithelial cell line model. Following three months of culture in a chronic inflammatory environment under conditions of normoxia and hypoxia (0.5% oxygen), normal cells developed a number of key genotypic and phenotypic alterations. Important cellular features such as the proliferative, adhesive and invasive capacity of the normal cells were significantly amplified. In addition, gene expression profiles were altered in pathways associated with apoptosis, angiogenesis and invasion. The data generated in this study provides support that TNF-α, IL-1β and hypoxia promotes a neoplastic phenotype in normal bronchial epithelial cells. In turn these mediators may be of benefit for biomarker and/or immune-therapy target studies. This project provides an important inflammatory in vitro model for further immuno-oncology studies in the lung cancer setting.
Resumo:
Current translational and basic prostate cancer research is limited by the number of cell lines that truly reflect the spectrum of disease progression, with most commonly used cell lines being derived from metastatic lesions. There are essentially no prostate cancer cell lines derived from primary tumours or localised disease in wide use.
Resumo:
Despite recent recognition that the epithelial-mesenchymal transition (EMT) program acts in a dynamic manner (termed Epithelial to Mesenchymal Plasticity or EMP) during carcinoma metastasis, it has largely been ignored in the discovery and development of EMT-targeted therapies. In part, this has stemmed from a lack of preclinical models that can mimic the full dynamic nature of EMP and the perception that the EMT-reverting transition [or mesenchymal-epithelial reverting transition; (MErT)] is a mere antithesis of EMT. The objective of this study was to develop the first PCa model capable of recapitulating the dynamic nature of EMP.
Resumo:
Cervical cancer develops through precursor lesions, i.e. cervical intraepithelialneoplasms (CIN). These can be detected and treated before progression to invasive cancer. The major risk factor for developing cervical cancer or CIN is persistent or recurrent infection with high-risk human papilloma virus (hrHPV). Other associated risk factors include low socioeconomic status, smoking, sexually transmitted infections, and high number of sexual partners, and these risk factors can predispose to some other cancers, excess mortality, and reproductive health complications as well. The aim was to study long-term cancer incidence, mortality, and reproductive health outcomes among women treated for CIN. Based on the results, we could evaluate the efficacy and safety of CIN treatment practices and estimate the role of the risk factors of CIN patients for cancer incidence, mortality, and reproductive health. We collected a cohort of 7 599 women treated for CIN at Helsinki University Central Hospital from 1974 to 2001. Information about their cancer incidence, cause of death, birth of children and other reproductive endpoints, and socio-economic status were gathered through registerlinkages to the Finnish Cancer Registry, Finnish Population Registry, and Statistics Finland. Depending on the endpoints in question, the women treated were compared to the general population, to themselves, or to an age- and municipality-matched reference cohort. Cervical cancer incidence was increased after treatment of CIN for at least 20 years, regardless of the grade of histology at treatment. Compared to all of the colposcopically guided methods, cold knife conization (CKC) was the least effective method of treatment in terms of later CIN 3 or cervical cancer incidence. In addition to cervical cancer, incidence of other HPV-related anogenital cancers was increased among those treated, as was the incidence of lung cancer and other smoking-related cancers. Mortality from cervical cancer among the women treated was not statistically significantly elevated, and after adjustment for socio-economic status, the hazard ratio (HR) was 1.0. In fact, the excess mortality among those treated was mainly due to increased mortality from other cancers, especially from lung cancer. In terms of post-treatment fertility, the CIN treatments seem to be safe: The women had more deliveries, and their incidence of pregnancy was similar before and after treatment. Incidence of extra-uterine pregnancies and induced abortions was elevated among the treated both before and after treatment. Thus this elevation did not occur because they were treated rather to a great extent was due to the other known risk factors these women had in excess, i.e. sexually transmitted infections. The purpose of any cancer preventive activity is to reduce cancer incidence and mortality. In Finland, cervical cancer is a rare disease and death from it even rarer, mostly due to the effective screening program. Despite this, the women treated are at increased risk for cancer; not just for cervical cancer. They must be followed up carefully and for a long period of time; general health education, especially cessation of smoking, is crucial in the management process, as well as interventions towards proper use of birth control such as condoms.
Resumo:
Non-small cell lung cancer consists of a diverse range of molecular and pathological features. This may be due in part to the critical interaction between normal and lung cancer cells. Consequently resulting in ‘normal’ cells acting in a malignant fashion. This project aims to identify pathways responsible for this altered ‘normal’ behaviour.
Resumo:
Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.
Resumo:
The X-ray structure and electron density distribution of ethane-1,2-diol (ethylene glycol), obtained at a resolution extending to 1.00 Å−1 in sin θ/λ (data completion = 100% at 100 K) by in situ cryocrystallization technique is reported. The diol is in the gauche (g′Gt) conformation with the crystal structure stabilised by a network of inter-molecular hydrogen bonds. In addition to the well-recognized O–H···O hydrogen bonds there is topological evidence for C–H···O inter-molecular interactions. There is no experimental electron density based topological evidence for the occurrence of an intra-molecular hydrogen bond. The O···H spacing is not, vert, similar0.45 Å greater than in the gas-phase with an O–H···O angle close to 90°, calling into question the general assumption that the gauche conformation of ethane-1,2-diol is stabilised by the intra-molecular oxygen–hydrogen interaction.
Resumo:
The tension created when companies are collaborating with competitors – sometimes termed co-opetition - has been subject of research within the network approach. As companies are collaborating with competitors, they need to simultaneously share and protect knowledge. The opportunistic behavior and learning intent of the partner may be underestimated, and collaboration may involve significant risks of loss of competitive edge. Contrastingly, the central tenet within the Intellectual Capital approach is that knowledge grows as it flows. The person sharing does not lose the knowledge and therefore knowledge has doubled from a company’s point of view. Value is created through the interplay of knowledge flows between and within three forms of intellectual capital: human, structural and relational capital. These are the points of departure for the research conducted in this thesis. The thesis investigates the tension between collaboration and competition through an Intellectual Capital lens, by identifying the actions taken to share and protect knowledge in interorganizational collaborative relationships. More specifically, it explores the tension in knowledge flows aimed at protecting and sharing knowledge, and their effect on the value creation of a company. It is assumed, that as two companies work closely together, the collaborative relationship becomes intertwined between the two partners and the intellectual capital flows of both companies are affected. The research finds that companies commonly protect knowledge also in close and long-term collaborative relationships. The knowledge flows identified are both collaborative and protective, with the result that they sometimes are counteracting and neutralize each other. The thesis contributes to the intellectual capital approach by expanding the understanding of knowledge protection in interorganizational relationships in three ways. First, departing from the research on co-opetition it shifts the focus from the internal view of the company as a repository of intellectual capital onto the collaborative relationships between competing companies. Second, instead of the traditional collaborative and sharing point of departure, it takes a competitive and protective perspective. Third, it identifies the intellectual capital flows as assets or liabilities depending on their effect on the value creation of the company. The actions taken to protect knowledge in an interorganizational relationship may decrease the value created in the company, which would make them liabilities.
Resumo:
The driving force behind this study is the gap between the reality of the firms engaged in project business and the available studies covering project management and business process development. Previous studies show that project-based organizations were ‘immature’ in terms of the project-management ‘maturity model’, as few firms were found to be optimizing processes. Even within those, very little attention was paid to combine inter-organizational and intra-organizational perspectives. In this study an effort is made to elaborate some thoughts and views on project management, which interrelate firms’ external and internal activities. In line with the integration, the dissertation uses an approach to the management of project-business interdependencies in the networks of actors, activities and resources. Firstly, the study develops an understanding for inter-organizational perspectives by exploring the complementarities of process activities in the basic development of project business. It presents a framework that is elaborated on the basis of the reciprocal interactions of activities within and outside the organization—thus providing a coherent basis for continuous business-process improvement. In addition, the study presents new tools that can be used to develop project-business processes in each of its functional areas. The research demonstrates how project-business activities can be optimized using the right resources at the right time with the right actors and the right actions. The selected five articles included in this dissertation explain the basic framework for the development of project business. Each paper covers various aspects of inter-organizational and intra-organizational perspectives for project management. The study develops a valuable and procedural model for business-process improvement using the Delphi method that can be used not only in academia but also as a guide for practitioners that takes them through a series of well-defined steps when making informed, consistent and efficient changes to their business processes.
Resumo:
Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.
Resumo:
Tiivistelmä ReferatAbstract Metabolomics is a rapidly growing research field that studies the response of biological systems to environmental factors, disease states and genetic modifications. It aims at measuring the complete set of endogenous metabolites, i.e. the metabolome, in a biological sample such as plasma or cells. Because metabolites are the intermediates and end products of biochemical reactions, metabolite compositions and metabolite levels in biological samples can provide a wealth of information on on-going processes in a living system. Due to the complexity of the metabolome, metabolomic analysis poses a challenge to analytical chemistry. Adequate sample preparation is critical to accurate and reproducible analysis, and the analytical techniques must have high resolution and sensitivity to allow detection of as many metabolites as possible. Furthermore, as the information contained in the metabolome is immense, the data set collected from metabolomic studies is very large. In order to extract the relevant information from such large data sets, efficient data processing and multivariate data analysis methods are needed. In the research presented in this thesis, metabolomics was used to study mechanisms of polymeric gene delivery to retinal pigment epithelial (RPE) cells. The aim of the study was to detect differences in metabolomic fingerprints between transfected cells and non-transfected controls, and thereafter to identify metabolites responsible for the discrimination. The plasmid pCMV-β was introduced into RPE cells using the vector polyethyleneimine (PEI). The samples were analyzed using high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) coupled to a triple quadrupole (QqQ) mass spectrometer (MS). The software MZmine was used for raw data processing and principal component analysis (PCA) was used in statistical data analysis. The results revealed differences in metabolomic fingerprints between transfected cells and non-transfected controls. However, reliable fingerprinting data could not be obtained because of low analysis repeatability. Therefore, no attempts were made to identify metabolites responsible for discrimination between sample groups. Repeatability and accuracy of analyses can be influenced by protocol optimization. However, in this study, optimization of analytical methods was hindered by the very small number of samples available for analysis. In conclusion, this study demonstrates that obtaining reliable fingerprinting data is technically demanding, and the protocols need to be thoroughly optimized in order to approach the goals of gaining information on mechanisms of gene delivery.
Resumo:
Human papillomaviruses (HPVs) are the causal agents of cervical cancer, which is the second most common cancer among women worldwide. Cellular transformation and carcinogenesis depend on the activities of viral E5, E6 and E7 proteins. Alterations in cell-cell contacts and in communication between epithelial cells take place during cervical carcinogenesis, leading to changes in cell morphology, increased cell motility and finally invasion. The aim of this thesis was to study genome-wide effects of the HPV type 16 (HPV-16) E5 protein on the expression of host cell messenger RNAs (mRNAs) and microRNAs by applying microarray technology. The results showed that the HPV-16 E5 protein alters several cellular pathways involved in cellular adhesion, motility and proliferation as well as in the extracellular matrix. The E5 protein was observed to enhance wound healing of epithelial cell monolayers by increasing cell motility in vivo. HPV-16 E5-induced alterations in the expression of cellular microRNAs and their target genes seem to favour increased proliferation and tumorigenesis. E5 was also shown to affect the expression of adherens junction proteins in HaCaT epithelial keratinocytes. In addition, a study of a membrane cytoskeletal cross-linker protein, ezrin, revealed that when activated, it localizes to adherens junctions. The results suggest that ezrin distribution to forming adherens junctions is due to Rac1 activity in epithelial cells. These studies reveal for the first time the holistic effects of HPV-16 E5 protein in promoting precancerous events in epithelial cells. The results contribute to identifyinging novel markers for cervical precancerous stages and to predicting disease behaviour.
Resumo:
The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.