388 resultados para intervertebral staples
Resumo:
Introducción y objetivo: El collarín cervical es un dispositivo que tiene como objetivo disminuir el movimiento del cuello para evitar lesiones secundarias en el manejo del paciente traumático en el ámbito prehospitalario. Mediante la realización de esta revisión sistemática se ha pretendido evaluar si la colocación del collarín cervical disminuye la movilidad del cuello en el paciente traumático, así como determinar si puede producir o evitar lesiones durante su manejo. Metodología: Revisión sistemática en base a las disposiciones PRISMA. Se elaboró un protocolo de búsqueda que se utilizó en cuatro bases de datos (Medline, Scopus, CINAHL y Web of Science) y se incluyeron ensayos clínicos y estudios observacionales publicados entre enero de 1995 y diciembre de 2014. Resultados: La revisión se realizó a partir de 10 ensayos clínicos no aleatorizados de modesta calidad metodológica: en 6 se utilizaron cadáveres con lesión cervical y en los otros 4 voluntarios sanos sin lesión cervical y un ensayo clínico aleatorizado de muestra pequeña realizado sobre cadáveres con lesión cervical. En los estudios realizados en pacientes sanos sin lesión cervical se observó que el collarín disminuía de forma significativa la movilidad del cuello frente a la no inmovilización. Por el contrario, en los estudios en los que participaban cadáveres con lesión cervical se determinó que el collarín cervical no disminuía la movilidad del cuello. Además en tres estudios se detectó un aumento de la separación intervertebral y en uno, un aumento de la presión venosa yugular. Conclusiones: Si bien la inmovilización cervical reduce la movilidad del cuello en pacientes sin lesión, este efecto no se produce en quienes presentan lesiones cervicales.
Resumo:
Este trabalho tem por objetivo verificar os padrões adotados para retratar o protagonista das Crônicas de Nárnia de C. S. Lewis o leão Aslan - na sua tradução para o português brasileiro. A dissertação objetiva também estabelecer se o paralelo sugerido pelo autor das Crônicas entre Aslan e a figura do Deus cristão é captado para o português brasileiro. Baseamo-nos na carta documental escrita por Lewis, na qual ele descreve a relação entre sua obra e o texto bíblico, principalmente no seu personagem principal, Aslan. Como arcabouço teórico adotado, discorremos sobre algumas correntes dos Estudos da Tradução que foram úteis para a análise do corpus o conceito de estilo e de afastamento do original e adaptação (BAKER, 1993, SHUTTLEWORTH,1999, TOURY, 1980). Como metalinguagem que nos ajuda a explicar as mudanças ocorridas entre o texto original e o texto traduzido, utilizamos a Gramática Sistêmico-Funcional, principalmente a função experiencial descrita pelos Processos (em especial os Processos Verbais), e a função interpessoal representada pela Teoria da Valoração (Appraisal). Para a análise dos textos, foi compilado um corpus paralelo contendo os sete livros da série em inglês e português e também um corpus comparável, utilizado para ratificar os resultados encontrados. Esses resultados apontam para um afastamento do texto traduzido radical em relação ao texto original no que se refere à construção do personagem Aslan, a saber: mudanças na prosódia semântica, mudanças de Força, omissões ou adições que alteram o sentido e mudança na agência dos Processos Verbais. Sugerimos que esses contrastes entre as alegorias tecidas por Lewis no texto original e o que encontramos na fala traduzida de Aslan podem alterar a percepção que se tem de Aslan como um símbolo cristão, quando reescrito em português do Brasil
Resumo:
Tissue engineering offers a paradigm shift in the treatment of back pain. Engineered intervertebral discs could replace degenerated tissue and overcome the limitations of current treatments, which substantially alter the biomechanical properties of the spine. The centre of the disc, the nucleus pulposus, is an amorphous gel with a large bound water content and it can resist substantial compressive loads. Due to similarities in their compositions, hydrogels have frequently been considered as substitutes for the nucleus pulposus. However, there has been limited work characterising the time-dependent mechanical behaviour of hydrogel scaffolds for nucleus pulposus tissue engineering. Poroelastic behaviour, which plays a key role in nutrient transport, is of particular importance. Here, we investigate the time-dependent mechanical properties of gelatin and agar hydrogels and of gelatin-agar composites. The time-dependent properties of these hydrogels are explored using viscoelastic and poroelastic frameworks. Several gel formulations demonstrate comparable equilibrium elastic behaviour to the nucleus pulposus under unconfined compression, but permeability values that are much greater than those of the native tissue. A range of time-dependent responses are observed in the composite gels examined, presenting the opportunity for targeted design of custom hydrogels with combinations of mechanical properties optimized for tissue engineering applications. © 2011 Elsevier Ltd.
Resumo:
New materials are needed to replace degenerated intervertebral disc tissue and to provide longer-term solutions for chronic back-pain. Replacement tissue potentially could be engineered by seeding cells into a scaffold that mimics the architecture of natural tissue. Many natural tissues, including the nucleus pulposus (the central region of the intervertebral disc) consist of collagen nanofibers embedded in a gel-like matrix. Recently it was shown that electrospun micro- or nano-fiber structures of considerable thickness can be produced by collecting fibers in an ethanol bath. Here, randomly aligned polycaprolactone electrospun fiber structures up to 50 mm thick are backfilled with alginate hydrogels to form novel composite materials that mimic the fiber-reinforced structure of the nucleus pulposus. The composites are characterized using both indentation and tensile testing. The composites are mechanically robust, exhibiting substantial strain-to-failure. The method presented here provides a way to create large biomimetic scaffolds that more closely mimic the composite structure of natural tissue. © 2012 Materials Research Society.
Resumo:
Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively.
Resumo:
Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively. © 2014 Springer Science+Business Media New York.
Resumo:
Radiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4days post-injection and decreased plasma AUC 7-fold.
Resumo:
Mechanical stimuli are important factors that regulate cell proliferation, survival, metabolism and motility in a variety of cell types. The relationship between mechanical deformation of the extracellular matrix and intracellular deformation of cellular sub-regions and organelles has not been fully elucidated, but may provide new insight into the mechanisms involved in transducing mechanical stimuli to biological responses. In this study, a novel fluorescence microscopy and image analysis method was applied to examine the hypothesis that mechanical strains are fully transferred from a planar, deformable substrate to cytoplasmic and intranuclear regions within attached cells. Intracellular strains were measured in cells derived from the anulus fibrosus of the intervertebral disc when attached to an elastic silicone membrane that was subjected to tensile stretch. Measurements indicated cytoplasmic strains were similar to those of the underlying substrate, with a strain transfer ratio (STR) of 0.79. In contrast, nuclear strains were much smaller than those of the substrate, with an STR of 0.17. These findings are consistent with previous studies indicating nuclear stiffness is significantly greater than cytoplasmic stiffness, as measured using other methods. This study provides a novel method for the study of cellular mechanics, including a new technique for measuring intranuclear deformations, with evidence of differential magnitudes and patterns of strain transferred from the substrate to cell cytoplasm and nucleus.
Resumo:
Cell delivery to the pathological intervertebral disc (IVD) has significant therapeutic potential for enhancing IVD regeneration. The development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the nucleus pulposus (NP) region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into carriers for cell delivery may be beneficial for promoting NP cell survival and phenotype. Here, an injectable, laminin-111 functionalized poly(ethylene glycol) (PEG-LM111) hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. We evaluated the mechanical properties of the PEG-LM111 hydrogel, and its ability to retain delivered cells in the IVD space. Gelation occurred in approximately 20 min without an initiator, with dynamic shear moduli in the range of 0.9-1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 carrier, as compared to cells in liquid suspension. Together, these results suggest this injectable laminin-functionalized biomaterial may be an easy to use carrier for delivering cells to the IVD.
Resumo:
Intervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (µ-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of µ-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses.
Resumo:
A large percentage of the population may be expected to experience painful symptoms or disability associated with intervertebral disc (IVD) degeneration - a condition characterized by diminished integrity of tissue components. Great interest exists in the use of autologous or allogeneic cells delivered to the degenerated IVD to promote matrix regeneration. Induced pluripotent stem cells (iPSCs), derived from a patient's own somatic cells, have demonstrated their capacity to differentiate into various cell types although their potential to differentiate into an IVD cell has not yet been demonstrated. The overall objective of this study was to assess the possibility of generating iPSC-derived nucleus pulposus (NP) cells in a mouse model, a cell population that is entirely derived from notochord. This study employed magnetic activated cell sorting (MACS) to isolate a CD24(+) iPSC subpopulation. Notochordal cell-related gene expression was analyzed in this CD24(+) cell fraction via real time RT-PCR. CD24(+) iPSCs were then cultured in a laminin-rich culture system for up to 28 days, and the mouse NP phenotype was assessed by immunostaining. This study also focused on producing a more conducive environment for NP differentiation of mouse iPSCs with addition of low oxygen tension and notochordal cell conditioned medium (NCCM) to the culture platform. iPSCs were evaluated for an ability to adopt an NP-like phenotype through a combination of immunostaining and biochemical assays. Results demonstrated that a CD24(+) fraction of mouse iPSCs could be retrieved and differentiated into a population that could synthesize matrix components similar to that in native NP. Likewise, the addition of a hypoxic environment and NCCM induced a similar phenotypic result. In conclusion, this study suggests that mouse iPSCs have the potential to differentiate into NP-like cells and suggests the possibility that they may be used as a novel cell source for cellular therapy in the IVD.
Resumo:
During the period of 1990-2005, American-born women composers have contributed significantly to the standard clarinet repertoire. Pioneering composers such as Joan Tower, Margaret Brouwer, and Libby Larsen have created staples for clarinet literature. Yet, there is very little scholarly research on women composers of clarinet music, most being concentrated on Joan Tower. Through my research, I have discovered over seventy-five works by more than fifty composers in the following genres: solo clarinet; clarinet and piano; clarinet and voice, with or without piano; and small chamber pieces for up to five players. This performance dissertation project consists of three recitals featuring solo and chamber works by nine living women composers, and program notes containing pertinent biographical and compositional information. My intent is to increase recognition women composers, both prominent and lesser known, who are writing high-quality, accessible clarinet literature. Each woman selected is making a full or partial living from the sales of her compositions, has received recognition through awards, commissions, grants, and frequent performances, and has composed works that are both performer and audience accessible. Recital 1: Trios for Clarinet, Violin, and Piano Commissioned by the Verdehr Trio and Composed by American-Born Women Composers. Composers: Jennifer Higdon, Joan Tower, Margaret Brouwer, and Libby Larsen. Recital II: Programmatic Clarinet Works by American-Born Women Composers. Composers: Andrea Clearfield, Stella Sung, and Karen Amrhein. Recital III: Works for Solo Clarinet, Clarinet and Piano, and Clarinet Concerto Genres by American-Born Women Composers. Composers: Persis Parshall Vehar, Jenni Brandon, Margaret Brouwer, and Libby Larsen.
Resumo:
Common Learning Management Systems (for example Moodle [1] and Blackboard [2]) are limited in the amount of personalisation that they can offer the learner. They are used widely and do offer a number of tools for instructors to enable them to create and manage courses, however, they do not allow for the learner to have a unique personalised learning experience. The e-Learning platform iLearn offers personalisation for the learner in a number of ways and one way is to offer the specific learning material to the learner based on the learner's learning style. Learning styles and how we learn is a vast research area. Brusilovsky and Millan [3] state that learning styles are typically defined as the way people prefer to learn. Examples of commonly used learning styles are Kolb Learning Styles Theory [4], Felder and Silverman Index of Learning Styles [5], VARK [6] and Honey and Mumford Index of Learning Styles [7] and many research projects (SMILE [8], INSPIRE [9], iWeaver [10] amonst others) attempt to incorporate these learning styles into adaptive e-Learning systems. This paper describes how learning styles are currently being used within the area of adaptive e-Learning. The paper then gives an overview of the iLearn project and also how iLearn is using the VARK learning style to enhance the platform's personalisation and adaptability for the learner. This research also describes the system's design and how the learning style is incorporated into the system design and semantic framework within the learner's profile.
Resumo:
A project within a computing department at the University of Greenwich, has been carried out to identify whether podcasting can be used to help understanding and learning of a subject (3D Animation). We know that the benefits of podcasting in education (HE) can be justified, [1]; [2]; [3]; [4]; [5]; [6] and that some success has been proven, but this paper aims to report the results of a term-long project that provided podcast materials for students to help support their learning using Xserve and Podcast Producer technology. Findings in a previous study [6] identified podcasting as a way to diversify learning and provde a more personalised learning experience for students, as well as being able to provide access to a greater mix of learning styles [7]. Finally this paper aims to present the method of capture and distribution, the methodologies of the study, analysis of results, and conclusions that relate to podcasting and enhanced supported learning.