992 resultados para integer index cycles
Resumo:
We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilises direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially non-homogenous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.
Resumo:
The permeability index Ck, similar to the compression index, is the slope of the void ratio – coefficient of permeability relationship. Literature shows that, in general, for sensitive clays it can be related to initial void ratio by Ck = 0.5e0. The possibility of obtaining such a relationship for Cochin marine clays in terms of liquid limit void ratio is indicated in this paper. Analysis of permeability behaviour of Cochin marine clays and the test results available in published literature using generalized state parameter approach show that, in principle, these forms of equations for the permeability index are tenable, even though they were obtained based on experimental observation alone.
Resumo:
Soils showing changes in plasticity characteristics upon driving form an important group in tropical soils. These changes are attributed to the grouping of particles into aggregates either due to mineralogy or presence of cementing agents and/or pore fluid characteristics. These changes are found to be permanent. In this paper, the effect of these changes leading to changes in index properties is discussed. The coefficient of permeability has been found to be comparable at liquid limit water content for different soils of varying liquid limit values. Permeability is an indirect reflection of microstructure and indicates the flow rate, which depends upon pore geometry. Other mechanical properties like compressibility and shear strength also depend upon pore geometry. These microstructural aspects of liquid limit as a reference state for the analysis of engineering behavior of tropical soils are examined in detail.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
The new working pairs, R21-NMP and R21-DMA, find potential application as working pairs for the single stage Resorption Heat Pump (RHP) and the Resorption Heat Transformer (RHT) cycles. A thermodynamic cycle analysis with these pairs shows that single stage RHPs have high COPs in their entire range of operation. RHTs show higher temperature boosts (up to 47 K) than the simple absorption heat transformers. Absorber temperatures of up to 400 K can be achieved in a single stage RHT system using R21 as the refrigerant. However, absorption-resorption systems have inherent limitations on the range of operating temperatures. Besides, they necessitate a higher pump work as compared to simple single stage absorption heating systems.
Resumo:
This paper presents the results of a thermodynamic cycle analysis of single stage resorption heat pump (RHP) and resorption heat transformer (RHT) cycles with the new working pairs R22-NMP and R22-DMA. The coefficients of performance (COP) are correlated with the low grade source temperature, temperature at which useful heat is obtained and ambient temperature. The COPs are in the range 1.20–1.60 for the RHP mode and 0.25–0.45 for the RHT mode. Absorber temperatures (useful temperatures) as high as 50°C in the RHP mode and 87°C in the RHT mode have been obtained. It is observed that absorption-resorption systems are inflexible in their range of operating temperature and necessitate a higher pump work as compared with simple single-stage absorption heating systems. However, single stage RHTs show higher temperature boosts than simple absorption heat transformers.
Resumo:
Let G be an undirected graph with a positive real weight on each edge. It is shown that the number of minimum-weight cycles of G is bounded above by a polynomial in the number of edges of G. A similar bound holds if we wish to count the number of cycles with weight at most a constant multiple of the minimum weight of a cycle of G.
Resumo:
1. Recovery of rainforest bird community structure and composition, in relation to forest succession after slash-and-burn shifting cultivation or jhum was studied in Mizoram, north-east India. Replicate fallow sites abandoned after shifting cultivation 1, 5, 10, 25 and approximate to 100 years ago, were compared with primary evergreen and semi-evergreen forest using transect and quadrat sampling. 2. Vegetation variables such as woody plant species richness, tree density and vertical stratification increased with fallow age in a rapid. nun-linear, asymptotic manner. Principal components analysis of vegetation variables summarized 92.8% of the variation into two axes: PC1 reflecting forest development and woody plant succession (variables such as tree density, woody plant species richness), and PC2 depicting bamboo density, which increased from 1 to 25 years and declined thereafter. 3. Bird species richness, abundance and diversity, increased rapidly and asymptotically during succession paralleling vegetation recovery as shown by positive correlations with fallow age and PC1 scores of sites. Bamboo density reflected by PC2 had a negative effect on bird species richness and abundance. 4. The bird community similarity (Morisita index) of sites with primary forest also increased asymptotically with fallow age indicating sequential species turnover during succession. Bird community similarity of sites with primary forest (or between sites) was positively correlated with both physiognomic and floristic similarities with primary forest (or between sites). 5. The number of bird species in guilds associated with forest development and woody plants (canopy insectivores, frugivores: bark feeders) was correlated with PCI scores of the sites. Species in other guilds (e. g. granivores, understorey insectivores) appeared to dominate during early and mid-succession. 6. The non-linear relationships imply that fallow periods less than a threshold of 25 years for birds, and about 50-75 years for woody plants, are likely to cause substantial community alteration. 7. As 5-10-year rotation periods or jhum cycles prevail in many parts of north-east India. there is a need to protect and conserve tracts of late-successional and primary forest.
Resumo:
Seizure electroencephalography (EEG) was recorded from two channels-right (Rt) and left (Lt)-during bilateral electroconvulsive therapy (ECT) (n = 12) and unilateral ECT (n = 12). The EEG was also acquired into a microcomputer and was analyzed without knowledge of the clinical details. EEG recordings of both ECT procedures yielded seizures of comparable duration. The Strength Symmetry Index (SSI) was computed from the early- and midseizure phases using the fractal dimension of the EEG. The seizures of unilateral ECT were characterized by significantly smaller SSI in both phases. More unilateral than bilateral ECT seizures had a smaller than median SSI in both phases. The seizures also differed on other measures as reported in the literature. The findings indicate that SSI may be a potential measure of seizure adequacy that remains to be validated in future research.