916 resultados para information processing model
Resumo:
Introduction So far, social psychology in sport has preliminary focused on team cohesion, and many studies and meta-analyses tried to demonstrate a relation between cohesiveness of a team and its performance. How a team really co-operates and how the individual actions are integrated towards a team action is a question that has received relatively little attention in research. This may, at least in part, be due to a lack of a theoretical framework for collective actions, a dearth that has only recently begun to challenge sport psychologists. Objectives In this presentation a framework for a comprehensive theory of teams in sport is outlined and its potential to integrate research in the domain of team performance and, more specifically, the following presentations, is put up for discussion. Method Based on a model developed by von Cranach, Ochsenbein and Valach (1986), teams are considered to be information processing organisms, and team actions need to be investigated on two levels: the individual team member and the group as an entity. Elements to be considered are the task, the social structure, the information processing structure and the execution structure. Obviously, different task require different social structures, communication processes and co-ordination of individual movements. Especially in rapid interactive sports planning and execution of movements based on feedback loops are not possible. Deliberate planning may be a solution mainly for offensive actions, whereas defensive actions have to adjust to the opponent team's actions. Consequently, mental representations must be developed to allow a feed-forward regulation of team member's actions. Results and Conclusions Some preliminary findings based on this conceptual framework as well as further consequences for empirical investigations will be presented. References Cranach, M.v., Ochsenbein, G. & Valach, L. (1986). The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.
Resumo:
The present study investigated the relationship between psychometric intelligence and temporal resolution power (TRP) as simultaneously assessed by auditory and visual psychophysical timing tasks. In addition, three different theoretical models of the functional relationship between TRP and psychometric intelligence as assessed by means of the Adaptive Matrices Test (AMT) were developed. To test the validity of these models, structural equation modeling was applied. Empirical data supported a hierarchical model that assumed auditory and visual modality-specific temporal processing at a first level and amodal temporal processing at a second level. This second-order latent variable was substantially correlated with psychometric intelligence. Therefore, the relationship between psychometric intelligence and psychophysical timing performance can be explained best by a hierarchical model of temporal information processing.
Resumo:
Strategies of cognitive control are helpful in reducing anxiety experienced during anticipation of unpleasant or potentially unpleasant events. We investigated the associated cerebral information processing underlying the use of a specific cognitive control strategy during the anticipation of affect-laden events. Using functional magnetic resonance imaging, we examined differential brain activity during anticipation of events of unknown and negative emotional valence in a group of eighteen healthy subjects that used a cognitive control strategy, similar to "reality checking" as used in psychotherapy, compared with a group of sixteen subjects that did not exert cognitive control. While expecting unpleasant stimuli, the "cognitive control" group showed higher activity in left medial and dorsolateral prefrontal cortex areas but reduced activity in the left extended amygdala, pulvinar/lateral geniculate nucleus and fusiform gyrus. Cognitive control during the "unknown" expectation was associated with reduced amygdalar activity as well and further with reduced insular and thalamic activity. The amygdala activations associated with cognitive control correlated negatively with the reappraisal scores of an emotion regulation questionnaire. The results indicate that cognitive control of particularly unpleasant emotions is associated with elevated prefrontal cortex activity that may serve to attenuate emotion processing in for instance amygdala, and, notably, in perception related brain areas.
Resumo:
A. N. Turing’s 1936 concept of computability, computing machines, and computable binary digital sequences, is subject to Turing’s Cardinality Paradox. The paradox conjoins two opposed but comparably powerful lines of argument, supporting the propositions that the cardinality of dedicated Turing machines outputting all and only the computable binary digital sequences can only be denumerable, and yet must also be nondenumerable. Turing’s objections to a similar kind of diagonalization are answered, and the implications of the paradox for the concept of a Turing machine, computability, computable sequences, and Turing’s effort to prove the unsolvability of the Entscheidungsproblem, are explained in light of the paradox. A solution to Turing’s Cardinality Paradox is proposed, positing a higher geometrical dimensionality of machine symbol-editing information processing and storage media than is available to canonical Turing machine tapes. The suggestion is to add volume to Turing’s discrete two-dimensional machine tape squares, considering them instead as similarly ideally connected massive three-dimensional machine information cells. Three-dimensional computing machine symbol-editing information processing cells, as opposed to Turing’s two-dimensional machine tape squares, can take advantage of a denumerably infinite potential for parallel digital sequence computing, by which to accommodate denumerably infinitely many computable diagonalizations. A three-dimensional model of machine information storage and processing cells is recommended on independent grounds as better representing the biological realities of digital information processing isomorphisms in the three-dimensional neural networks of living computers.
Resumo:
Background Complete-pelvis segmentation in antero-posterior pelvic radiographs is required to create a patient-specific three-dimensional pelvis model for surgical planning and postoperative assessment in image-free navigation of total hip arthroplasty. Methods A fast and robust framework for accurately segmenting the complete pelvis is presented, consisting of two consecutive modules. In the first module, a three-stage method was developed to delineate the left hemipelvis based on statistical appearance and shape models. To handle complex pelvic structures, anatomy-specific information processing techniques were employed. As the input to the second module, the delineated left hemi-pelvis was then reflected about an estimated symmetry line of the radiograph to initialize the right hemi-pelvis segmentation. The right hemi-pelvis was segmented by the same three-stage method, Results Two experiments conducted on respectively 143 and 40 AP radiographs demonstrated a mean segmentation accuracy of 1.61±0.68 mm. A clinical study to investigate the postoperative assessment of acetabular cup orientations based on the proposed framework revealed an average accuracy of 1.2°±0.9° and 1.6°±1.4° for anteversion and inclination, respectively. Delineation of each radiograph costs less than one minute. Conclusions Despite further validation needed, the preliminary results implied the underlying clinical applicability of the proposed framework for image-free THA.
Resumo:
Several componential emotion theories suggest that appraisal outcomes trigger characteristic somatovisceral changes that facilitate information processing and prepare the organism for adaptive behavior. The current study tested predictions derived from Scherer's Component Process Model. Participants viewed unpleasant and pleasant pictures (intrinsic pleasantness appraisal) and were asked to concurrently perform either an arm extension or an arm flexion, leading to an increase or a decrease in picture size. Increasing pleasant stimuli and decreasing unpleasant stimuli were considered goal conducive; decreasing pleasant stimuli and increasing unpleasant stimuli were considered goal obstructive (goal conduciveness appraisal). Both appraisals were marked by several somatovisceral changes (facial electromyogram, heart rate (HR)). As predicted, the changes induced by the two appraisals showed similar patterns. Furthermore, HR results, compared with data of earlier studies, suggest that the adaptive consequences of both appraisals may be mediated by stimulus proximity.
Resumo:
Background. Among Hispanics, the HPV vaccine has the potential to eliminate disparities in cervical cancer incidence and mortality but only if optimal rates of vaccination are achieved. Media can be an important information source for increasing HPV knowledge and awareness of the vaccine. Very little is known about how media use among Hispanics affects their HPV knowledge and vaccine awareness. Even less is known about what differences exist in media use and information processing among English- and Spanish-speaking Hispanics.^ Aims. Examine the relationships between three health communication variables (media exposure, HPV-specific information scanning and seeking) and three HPV outcomes (knowledge, vaccine awareness and initiation) among English- and Spanish-speaking Hispanics.^ Methods. Cross-sectional data from a survey administered to Hispanic mothers in Dallas, Texas was used for univariate and multivariate logistic regression analyses. Sample used for analysis included 288 mothers of females aged 8-22 recruited from clinics and community events. Dependent variables of interest were HPV knowledge, HPV vaccine awareness and initiation. Independent variables were media exposure, HPV-specific information scanning and seeking. Language was tested as an effect modifier on the relationship between health communication variables and HPV outcomes.^ Results. English-speaking mothers reported more media exposure, HPV-specific information scanning and seeking than Spanish-speakers. Scanning for HPV information was associated with more HPV knowledge (OR = 4.26, 95% CI = 2.41 - 7.51), vaccine awareness (OR = 10.01, 95% CI = 5.43 - 18.47) and vaccine initiation (OR = 2.54, 95% CI = 1.09 - 5.91). Seeking HPV-specific information was associated with more knowledge (OR = 2.27, 95% CI = 1.23 - 4.16), awareness (OR = 6.60, 95% CI = 2.74 - 15.91) and initiation (OR = 4.93, 95% CI = 2.64 - 9.20). Language moderated the effect of information scanning and seeking on vaccine awareness.^ Discussion. Differences in information scanning and seeking behaviors among Hispanic subgroups have the potential to lead to disparities in vaccine awareness.^ Conclusion. Findings from this study underscore health communication differences among Hispanics and emphasize the need to target Spanish language media as well as English language media aimed at Hispanics to improve knowledge and awareness.^
Resumo:
Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.
Resumo:
La implantación de las tecnologías Internet ha permitido la extensión del uso de estrategias e-manufacturing y el desarrollo de herramientas para la recopilación, transformación y sincronización de datos de fabricación vía web. En este ámbito, un área de potencial desarrollo es la extensión del virtual manufacturing a los procesos de Performance Management (PM), área crítica para la toma de decisiones y ejecución de acciones de mejora en fabricación. Este trabajo doctoral propone un Arquitectura de Información para el desarrollo de herramientas virtuales en el ámbito PM. Su aplicación permite asegurar la interoperabilidad necesaria en los procesos de tratamiento de información de toma de decisión. Está formado por tres sub-sistemas: un modelo conceptual, un modelo de objetos y un marco Web compuesto de una plataforma de información y una arquitectura de servicios Web (WS). El modelo conceptual y el modelo de objetos se basa en el desarrollo de toda la información que se necesita para definir y obtener los diferentes indicadores de medida que requieren los procesos PM. La plataforma de información hace uso de las tecnologías XML y B2MML para estructurar un nuevo conjunto de esquemas de mensajes de intercambio de medición de rendimiento (PMXML). Esta plataforma de información se complementa con una arquitectura de servicios web que hace uso de estos esquemas para integrar los procesos de codificación, decodificación, traducción y evaluación de los performance key indicators (KPI). Estos servicios realizan todas las transacciones que permiten transformar los datos origen en información inteligente usable en los procesos de toma de decisión. Un caso práctico de intercambio de datos en procesos de medición del área de mantenimiento de equipos es mostrado para verificar la utilidad de la arquitectura. ABSTRAC The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronizing manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to Performance Measurement (PM) processes, a critical area for decision-making and implementing improvement actions in manufacturing. This thesis proposes a Information Architecture to integrate decision support systems in e-manufacturing. Specifically, the proposed architecture offers a homogeneous PM information exchange model that can be applied trough decision support in emanufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a object model and Web Framework which is composed by a PM information platform and PM-Web services architecture. . The data model and the object model are based on developing all the information required to define and acquire the different indicators required by PM processes. The PM information platform uses XML and B2MML technologies to structure a new set of performance measurement exchange message schemas (PM-XML). This PM information platform is complemented by a PM-Web Services architecture that uses these schemas to integrate the coding, decoding, translation and assessment processes of the key performance indicators (KPIs). These services perform all the transactions that enable the source data to be transformed into smart data that can be used in the decision-making processes. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the architecture.
Resumo:
Today?s knowledge management (KM) systems seldom account for language management and, especially, multilingual information processing. Document management is one of the strongest components of KM systems. If these systems do not include a multilingual knowledge management policy, intranet searches, excessive document space occupancy and redundant information slow down what are the most effective processes in a single language environment. In this paper, we model information flow from the sources of knowledge to the persons/systems searching for specific information. Within this framework, we focus on the importance of multilingual information processing, which is a hugely complex component of modern organizations.
Resumo:
La gestión del conocimiento (KM) se basa en la captación, filtración, procesamiento y análisis de unos datos en bruto que con dicho refinamiento podrán llegar a convertirse en conocimiento o Sabiduría. Estas prácticas tendrán lugar en este PFC en una WSN (Wireless Sensor Network) compuesta de unos sofisticados dispositivos comúnmente conocidos como “motas” y cuya principal característica son sus bajas capacidades en cuanto a memoria, batería o autonomía. Ha sido objetivo primordial de este Proyecto de fin de Carrera aunar una WSN con la Gestión del Conocimiento así como demostrar que es posible llevar a cabo grandes procesamientos de información, con tan bajas capacidades, si se distribuyen correctamente los procesos. En primera instancia, se introducen conceptos básicos acerca de las WSN (Wireless Sensor Networks) así como de los elementos principales en dichas redes. Tras conocer el modelo de arquitectura de comunicaciones se procede a presentar la Gestión del Conocimiento de forma teórica y a continuación la interpretación que se ha hecho a partir de diversas referencias bibliográficas para llevar a cabo la implementación del proyecto. El siguiente paso es describir punto por punto todos los componentes del Simulador; librerías, funcionamiento y demás cuestiones sobre configuración y puesta a punto. Como escenario de aplicación se plantea una red de sensores inalámbricos básica cuya topología y ubicación es completamente configurable. Se lleva a cabo una configuración a nivel de red basada en el protocolo 6LowPAN pero con posibilidad de simplificarlo. Los datos se procesan de acuerdo a un modelo piramidal de Gestión de Conocimiento adaptable a las necesidades del usuario. Mediante la utilización de las diversas opciones que proporciona la interfaz gráfica implementada y los documentos de resultados que se van generando, se puede llevar a cabo un detallado estudio posterior de la simulación y comprobar si se cumplen las expectativas planteadas. Knowledge management (KM) is based on the collection, filtering, processing and analysis of some raw data which such refinement it can be turned into knowledge or wisdom. These practices will take place in a WSN (Wireless Sensor Network) consists of sophisticated devices commonly known as "dots" and whose main characteristics are its low capacity for memory, battery or autonomy. A primary objective of this Project will be to join a WSN with Knowledge Management and show that it is possible make largo information processing, with such low capacity if the processes are properly distributed. First, we introduce basic concepts about the WSN (Wireless Sensor Networks) and major elements of these networks. After meeting the communications architecture model, we proceed to show the Knowledge Management theory and then the interpretation of several bibliographic references to carry out the project implementation. The next step is discovering point by point all over the Simulator components; libraries, operation and the rest of points about configuration and tuning. As application scenario we propose a basic wireless sensor network whose topology and location is completely customizable. It will perform a network level configuration based in W6LowPAN Protocol. Data is processed according to a pyramidal pattern Knowledge Management adaptable to the user´s needs. The hardware elements will suffer more or less energy dependence depending on their role and activity in the network. Through the various options that provide the graphical interface has been implemented and results documents that are generated, can be carried out after a detailed study of the simulation and verify compliance with the expectations raised.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
RESUMEN Las enfermedades cardiovasculares constituyen en la actualidad la principal causa de mortalidad en el mundo y se prevé que sigan siéndolo en un futuro, generando además elevados costes para los sistemas de salud. Los dispositivos cardiacos implantables constituyen una de las opciones para el diagnóstico y el tratamiento de las alteraciones del ritmo cardiaco. La investigación clínica con estos dispositivos alcanza gran relevancia para combatir estas enfermedades que tanto afectan a nuestra sociedad. Tanto la industria farmacéutica y de tecnología médica, como los propios investigadores, cada día se ven involucrados en un mayor número de proyectos de investigación clínica. No sólo el incremento en su volumen, sino el aumento de la complejidad, están generando mayores gastos en las actividades asociadas a la investigación médica. Esto está conduciendo a las compañías del sector sanitario a estudiar nuevas soluciones que les permitan reducir los costes de los estudios clínicos. Las Tecnologías de la Información y las Comunicaciones han facilitado la investigación clínica, especialmente en la última década. Los sistemas y aplicaciones electrónicos han proporcionado nuevas posibilidades en la adquisición, procesamiento y análisis de los datos. Por otro lado, la tecnología web propició la aparición de los primeros sistemas electrónicos de adquisición de datos, que han ido evolucionando a lo largo de los últimos años. Sin embargo, la mejora y perfeccionamiento de estos sistemas sigue siendo crucial para el progreso de la investigación clínica. En otro orden de cosas, la forma tradicional de realizar los estudios clínicos con dispositivos cardiacos implantables precisaba mejorar el tratamiento de los datos almacenados por estos dispositivos, así como para su fusión con los datos clínicos recopilados por investigadores y pacientes. La justificación de este trabajo de investigación se basa en la necesidad de mejorar la eficiencia en la investigación clínica con dispositivos cardiacos implantables, mediante la reducción de costes y tiempos de desarrollo de los proyectos, y el incremento de la calidad de los datos recopilados y el diseño de soluciones que permitan obtener un mayor rendimiento de los datos mediante la fusión de datos de distintas fuentes o estudios. Con este fin se proponen como objetivos específicos de este proyecto de investigación dos nuevos modelos: - Un modelo de recuperación y procesamiento de datos para los estudios clínicos con dispositivos cardiacos implantables, que permita estructurar y estandarizar estos procedimientos, con el fin de reducir tiempos de desarrollo Modelos de Métrica para Sistemas Electrónicos de Adquisición de Datos y de Procesamiento para Investigación Clínica con Dispositivos Cardiacos Implantables de estas tareas, mejorar la calidad del resultado obtenido, disminuyendo en consecuencia los costes. - Un modelo de métrica integrado en un Sistema Electrónico de Adquisición de Datos (EDC) que permita analizar los resultados del proyecto de investigación y, particularmente del rendimiento obtenido del EDC, con el fin de perfeccionar estos sistemas y reducir tiempos y costes de desarrollo del proyecto y mejorar la calidad de los datos clínicos recopilados. Como resultado de esta investigación, el modelo de procesamiento propuesto ha permitido reducir el tiempo medio de procesamiento de los datos en más de un 90%, los costes derivados del mismo en más de un 85% y todo ello, gracias a la automatización de la extracción y almacenamiento de los datos, consiguiendo una mejora de la calidad de los mismos. Por otro lado, el modelo de métrica posibilita el análisis descriptivo detallado de distintos indicadores que caracterizan el rendimiento del proyecto de investigación clínica, haciendo factible además la comparación entre distintos estudios. La conclusión de esta tesis doctoral es que los resultados obtenidos han demostrado que la utilización en estudios clínicos reales de los dos modelos desarrollados ha conducido a una mejora en la eficiencia de los proyectos, reduciendo los costes globales de los mismos, disminuyendo los tiempos de ejecución, e incrementando la calidad de los datos recopilados. Las principales aportaciones de este trabajo de investigación al conocimiento científico son la implementación de un sistema de procesamiento inteligente de los datos almacenados por los dispositivos cardiacos implantables, la integración en el mismo de una base de datos global y optimizada para todos los modelos de dispositivos, la generación automatizada de un repositorio unificado de datos clínicos y datos de dispositivos cardiacos implantables, y el diseño de una métrica aplicada e integrable en los sistemas electrónicos de adquisición de datos para el análisis de resultados de rendimiento de los proyectos de investigación clínica. ABSTRACT Cardiovascular diseases are the main cause of death worldwide and it is expected to continue in the future, generating high costs for health care systems. Implantable cardiac devices have become one of the options for diagnosis and treatment of cardiac rhythm disorders. Clinical research with these devices has acquired great importance to fight against these diseases that affect so many people in our society. Both pharmaceutical and medical technology companies, and also investigators, are involved in an increasingly number of clinical research projects. The growth in volume and the increase in medical research complexity are contributing to raise the expenditure level associated with clinical investigation. This situation is driving health care sector companies to explore new solutions to reduce clinical trial costs. Information and Communication Technologies have facilitated clinical research, mainly in the last decade. Electronic systems and software applications have provided new possibilities in the acquisition, processing and analysis of clinical studies data. On the other hand, web technology contributed to the appearance of the first electronic data capture systems that have evolved during the last years. Nevertheless, improvement of these systems is still a key aspect for the progress of clinical research. On a different matter, the traditional way to develop clinical studies with implantable cardiac devices needed an improvement in the processing of the data stored by these devices, and also in the merging of these data with the data collected by investigators and patients. The rationale of this research is based on the need to improve the efficiency in clinical investigation with implantable cardiac devices, by means of reduction in costs and time of projects development, as well as improvement in the quality of information obtained from the studies and to obtain better performance of data through the merging of data from different sources or trials. The objective of this research project is to develop the next two models: • A model for the retrieval and processing of data for clinical studies with implantable cardiac devices, enabling structure and standardization of these procedures, in order to reduce the time of development of these tasks, to improve the quality of the results, diminish therefore costs. • A model of metric integrated in an Electronic Data Capture system (EDC) that allow to analyze the results of the research project, and particularly the EDC performance, in order to improve those systems and to reduce time and costs of the project, and to get a better quality of the collected clinical data. As a result of this work, the proposed processing model has led to a reduction of the average time for data processing by more than 90 per cent, of related costs by more than 85 per cent, and all of this, through automatic data retrieval and storage, achieving an improvement of quality of data. On the other hand, the model of metrics makes possible a detailed descriptive analysis of a set of indicators that characterize the performance of each research project, allowing inter‐studies comparison. This doctoral thesis results have demonstrated that the application of the two developed models in real clinical trials has led to an improvement in projects efficiency, reducing global costs, diminishing time in execution, and increasing quality of data collected. The main contributions to scientific knowledge of this research work are the implementation of an intelligent processing system for data stored by implantable cardiac devices, the integration in this system of a global and optimized database for all models of devices, the automatic creation of an unified repository of clinical data and data stored by medical devices, and the design of a metric to be applied and integrated in electronic data capture systems to analyze the performance results of clinical research projects.
Resumo:
In order to establish an active internal know-how -reserve~ in an information processing and engineering services . company, a training architecture tailored to the company as an whole must be defined. When a company' s earnings come from . advisory services dynamically structured i.n the form of projects, as is the case at hand, difficulties arise that must be taken into account in the architectural design. The first difficulties are of a psychological nature and the design method proposed here begjns wi th the definition of the highest training metasystem, which is aimed at making adjustments for the variety of perceptions of the company's human components, before the architecture can be designed. This approach may be considered as an application of the cybernetic Law of Requisita Variety (Ashby) and of the Principle of Conceptual Integrity (Brooks) . Also included is a description of sorne of the results of the first steps of metasystems at the level of company organization.
Resumo:
Light Detection and Ranging (LIDAR) provides high horizontal and vertical resolution of spatial data located in point cloud images, and is increasingly being used in a number of applications and disciplines, which have concentrated on the exploit and manipulation of the data using mainly its three dimensional nature. Bathymetric LIDAR systems and data are mainly focused to map depths in shallow and clear waters with a high degree of accuracy. Additionally, the backscattering produced by the different materials distributed over the bottom surface causes that the returned intensity signal contains important information about the reflection properties of these materials. Processing conveniently these values using a Simplified Radiative Transfer Model, allows the identification of different sea bottom types. This paper presents an original method for the classification of sea bottom by means of information processing extracted from the images generated through LIDAR data. The results are validated using a vector database containing benthic information derived by marine surveys.