997 resultados para hot-wall LPCVD
Resumo:
Numerical and experimental studies of a supersonic jet (Helium) inclined at 45 degrees to a oncoming Mach 2 flow have been carried out. The numerical study has been used to arrive at a geometry that could reduce an oncoming Mach 5.75 flow to Mach 2 flow and in determining the jet parameters. Experiments are carried out in the IISc. hypersonic shock tunnel HST2 at similar conditions obtained from numerical studies. Flow visualization studies carried out using Schlieren technique clearly show the presence of the bow shock in front of the jet exposed to supersonic cross flow. The jet Mach number is experimentally found to be approximate to 3. Visual observations show that the jet has penetrated up to 60% of the total height of the chamber.
Resumo:
In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.
Resumo:
Digital image
Resumo:
Springsure Creek Coal (SCC) intends to develop a coal mine using the long wall mining process under grain farming land near Emerald in Central Queensland (CQ). While this technology will result in some subsidence of the land surface, SCC wishes to maintain productivity of the grain cropping land in the precinct after coal mining. However, the impact of the surface subsidence resulting from that mining process on productivity of cropping land in any Australian landscape is currently unclear. A research protocol to investigate the impacts of subsidence on grain productivity for when the SCC project becomes operational is proposed. The protocol has wider application for other similar mining projects throughout the country. A copy of the full report is accessible on www.aginstitute.com.au.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
Access to quality professional learning and the opportunity to collaborate with other educators can be limited for teachers in rural and remote areas of Western Australia. A recognised need to enhance the skills of rural teaching professionals and encourage teachers in small communities to join collegial networks was established by the members of several professional organisations. A working group consisting of representatives from the Australian College of Educators-WA (ACE-WA), the Rural and Remote Education Advisory Council (RREAC), the Society for the Provision of Education in Rural Australia (SPERA) and the School of Isolated and Distance Education (SIDE) provided teachers in rural areas with the opportunity to reduce professional isolation through the provision of relevant, convenient, and cost effective in-service education. Through a videoconferencing system, accessed within the Western Australian Telecentre Network and other educational organisations, the audience connected and participated with the presenter and studio based audience for two Hot Topics Seminars in 2008. This paper reports on the challenges and successes encountered by the working group and the findings of the research conducted throughout 2008.
Resumo:
A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 mu m up to 1455 K under Doppler limited resolution (0.015 cm(-1)). The nu(3)-ground state (GS) and nu(2)+nu(4)+nu(5)(Sigma(+)(u) and Delta(u))-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states. Significantly higher J-values than previously reported are observed for 40 known substates while 37 new e or f vibrational substates, up to about 6000 cm(-1), are identified and characterized by vibration-rotation parameters. The 3 811 new or improved data resulting from the analysis are merged into the database presented by Robert et al. [Mol. Phys. 106, 2581 (2008)], now including 15 562 lines accessing vibrational states up to 8600 cm(-1). A global model, updated as compared to the one in the previous paper, allows all lines in the database to be simultaneously fitted, successfully. The updates are discussed taking into account, in particular, the systematic inclusion of Coriolis interaction.
Resumo:
The solution for a line source of oscillatory strength kept at the origin in a wall bounding a semi-infinite viscous imcompressible stratified fluid is presented in an integral form. The behaviour of the flow at far field and near field is studied by an asymptotic expansion procedure. The streamlines for different parameters are drawn and discussed. The real characteristic straight lines present in the inviscid problem are modified by the viscosity and the solutions obtained are valid even at the resonance frequency.
Resumo:
The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.
Resumo:
An analysis of inviscid incompressible flow in a tube of sinusoidally perturbed circular cross section with wall injection has been made. The velocity and pressure fields have been obtained. Measurements of axial velocity profiles and pressure distribution have been made in a simulated star shaped tube with wall injection. The static pressure at the star recess is found to be more than that at the star point, this feature being in conformity with the analytical result. Flow visualisation by photography of injected smoke seems to show simple diffusion rather than strong vortices in the recess.
Resumo:
Modern dairy farming in Australia relies on substantial inputs of fertiliser nitrogen (N) to underpin economic production. However, N lost from dairy systems represents an opportunity cost and can pose a number of environmental risks. Nitrogen cycle inhibitors can be co-applied with N fertilisers to slow the conversion of urea to NH4+ to reduce losses via volatilisation, and slow the conversion of NH4+ to NO3- to minimize leaching of NO3- and gaseous losses via nitrification and denitrification. In a field campaign in a high input ryegrass-kikuyu pasture system we compared the soil N pools, losses and pasture production between a) urea coated with the nitrification inhibitor (3,4-dimethyl pyrazole phosphate - DMPP) b) urea coated with the urease inhibitor (N-(n-butyl) thiophosphoric triamide - NBPT) and c) standard urea. There was no treatment effect (P>0.05) on soil mineral N, pasture yield, N2O flux nor leaching of NO3- cf. standard urea. We hypothesise that at our site, because gaseous losses were highly episodic (rainfall was erratic and displayed no seasonal rainfall nor soil wetting pattern) that there was a lack of coincidence of N application and conditions conducive to gaseous losses, thus the effectiveness of the inhibitor products was minimal and did not result in an increase in pasture yield. There remains a paucity of knowledge on N cycle inhibitors in relation to their effective use in field system to increase N use efficiency. Further research is required to define under what field conditions inhibitor products are effective in order to be able to provide accurate advice to managers of nitrogen in production systems.
Resumo:
Fire resistance of light-gauge steel frame (LSF) walls can be enhanced by lining them with single or multiple layers of wall boards. This research is focused on the thermal per-formance of Magnesium Oxide (MgO) wall boards in comparison to the conventional gypsum plasterboards exposed to standard fire on one side. Thermal properties of MgO board and gypsum plasterboard were measured first and then used in the finite element heat transfer models of the two types of panels. The measured thermal property results show that MgO board will perform better than the gypsum plasterboards due to its higher specific heat values at elevated temperatures. However, MgO board loses 50% of its ini-tial mass at about 500 °C compared to 16% for gypsum plasterboard. The developed finite element models were validated using the fire test results of gypsum plasterboards and then used to study the thermal performance of MgO board panels. Finite element analysis re-sults show that when MgO board panels are exposed to standard fire on one side the rate of temperature rise on the ambient side is significantly reduced compared to gypsum plas-terboard. This has the potential to improve the overall thermal performance of MgO board lined LSF walls and their fire resistance levels (FRL). However, full scale fire tests are needed to confirm this. This paper presents the details of this investigation and the results.
Resumo:
Composites of Polystyrene-multi wall carbon nanotubes (PS-MWNTs) were prepared with loading up to 7 wt% of MWNTs by simple solvent mixing and drying technique. MWNTs with high aspect ratio similar to 4000 were used to make the polymer composites. A very high degree of dispersion of MWNTs was achieved by ultrasonication technique. As a result of high dispersion and high aspect ratio of the MWNTs electrical percolation was observed at rather low weight fraction similar to 0.0021. Characterization of the as prepared PS-MWNTs composites was done by Electron microscopy (EM), X-ray diffraction technique (XRD) and Thermogravimetery analysis (TGA).
Resumo:
Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.