960 resultados para high-molecular weight
Use of modified silica gel for concentrating Pb (II) and Cd (II) occurring in form of complex anions
Resumo:
The performance of silica gel, modified by the impregnation with a high molecular weight quaternary amine (triethyl octadecyl ammonium iodide), used for the concentration of heavy metals occurring in water is studied. The material under study captures Cd, Pb, which are capable of forming stable complexes with I- ions.The results obtained about the metal capture, under dynamic conditions, are described and metal ions are removed by desorption with EDTA and quantified by AAS.
Resumo:
Photosynthetic reactions are divided in two parts: light-driven electron transfer reactions and carbon fixation reactions. Electron transfer reactions capture solar energy and split water molecules to form reducing energy (NADPH) and energy-carrying molecules (ATP). These end-products are used for fixation of inorganic carbon dioxide into organic sugar molecules. Ferredoxin-NADP+ oxidoreductase (FNR) is an enzyme that acts at the branch point between the electron transfer reactions and reductive metabolism by catalyzing reduction of NADP+ at the last step of the electron transfer chain. In this thesis, two isoforms of FNR from A rabidopsis thaliana, FNR1 and FNR2, were characterized using the reverse genetics approach. The fnr1 and fnr2 mutant plants resembled each other in many respects. Downregulation of photosynthesis protected the single fnr mutant plants from excess formation of reactive oxygen species (ROS), even without significant upregulation of antioxidative mechanisms. Adverse growth conditions, however, resulted in phenotypic differences between fnr1 and fnr2. While fnr2 plants showed downregulation of photosynthetic complexes and upregulation of antioxidative mechanisms under low-temperature growth conditions, fnr1 plants had the wild-type phenotype, indicating that FNR2 may have a specific role in redistribution of electrons under unfavorable conditions. The heterozygotic double mutant (fnr1xfnr2) was severely devoid of chloroplastic FNR, which clearly restricted photosynthesis. The fnr1xfnr2 plants used several photoprotective mechanisms to avoid oxidative stress. In wild-type chloroplasts, both FNR isoforms were found from the stroma, the thylakoid membrane, and the inner envelope membrane. In the absence of the FNR1 isoform, FNR2 was found only in the stroma, suggesting that FNR1 and FNR2 form a dimer, by which FNR1 anchors FNR2 to the thylakoid membrane. Structural modeling predicted formation of an FNR dimer in complex with ferredoxin. In this thesis work, Tic62 was found to be the main protein that binds FNR to the thylakoid membrane, where Tic62 and FNR formed high molecular weight complexes. The formation of such complexes was shown to be regulated by the redox state of the chloroplast. The accumulation of Tic62-FNR complexes in darkness and dissociation of complexes from the membranes in light provide evidence that the complexes may have roles unrelated to photosynthesis. This and the high viability of fnr1 mutant plants lacking thylakoid-bound FNR indicate that the stromal pool of FNR is photosynthetically active.
Resumo:
The properties of the paper surface play a crucial role in ensuring suitable quality and runnability in various converting and finishing operations, such as printing. Plasma surface modification makes it possible to modify the surface chemistry of paper without altering the bulk material properties. This also makes it possible to investigate the role of the surface chemistry alone on printability without influencing the porous structure of the pigment-coated paper. Since the porous structure of a pigment coating controls both ink setting and optical properties, surface chemical changes created by a plasma modification have a potential to decouple these two effects and to permit a better optimization of them both. The aim of this work was to understand the effects of plasma surface modification on paper properties, and how it influences printability in the sheet-fed offset process. The objective was to broaden the fundamental understanding of the role of surface chemistry on offset printing. The effects of changing the hydrophilicity/ hydrophobicity and the surface chemical composition by plasma activation and plasma coatings on the properties of coated paper and on ink-paper interactions as well as on sheet-fed offset print quality were investigated. In addition, the durability of the plasma surface modification was studied. Nowadays, a typical sheet-fed offset press also contains units for surface finishing, for example UVvarnishing. The role of the surface chemistry on the UV-varnish absorption into highly permeable and porous pigment-coated paper was also investigated. With plasma activation it was possible to increase the surface energy and hydrophilicity of paper. Both polar and dispersion interactions were found to increase, although the change was greater in the polar interactions due to induced oxygen molecular groups. The results indicated that plasma activation takes place particularly in high molecular weight components such as the dispersion chemicals used to stabilize the pigment and latex particles. Surface composition, such as pigment and binder type, was found to influence the response to the plasma activation. The general trend was that pilot-scale treatment modified the surface chemistry without altering the physical coating structure, whereas excessive laboratory-scale treatment increased the surface roughness and reduced the surface strength, which led to micro-picking in printing. It was shown that pilot-scale plasma activation in combination with appropriate ink oils makes it possible to adjust the ink-setting rate. The ink-setting rate decreased with linseed-oil-based inks, probably due to increased acid-base interactions between the polar groups in the oil and the plasma-treated paper surface. With mineral-oil-based inks, the ink setting accelerated due to plasma activation. Hydrophobic plasma coatings were able to reduce or even prevent the absorption of dampening water into pigmentcoated paper, even when the dampening water was applied under the influence of nip pressure. A uniform hydrophobic plasma coating with sufficient chemical affinity with ink gave an improved print quality in terms of higher print density and lower print mottle. It was also shown that a fluorocarbon plasma coating reduced the free wetting of the UV-varnish into the highly permeable and porous pigment coating. However, when the UV-varnish was applied under the influence of nip pressure, which leads to forced wetting, the role of the surface chemical composition seems to be much less. A decay in surface energy and wettability occurred during the first weeks of storage after plasma activation, after which it leveled off. However, the oxygen/carbon elemental ratio did not decrease as a function of time, indicating that ageing could be caused by a re-orientation of polar groups or by a contamination of the surface. The plasma coatings appeared to be more stable when the hydrophobicity was higher, probably due to fewer interactions with oxygen and water vapor in the air.
Resumo:
This paper reports a case of nonpapillary and infiltrative transitional cell carcinoma (TCC) of the urinary bladder with metastasis of lumbar vertebrae and spinal cord compression in an adult female ocelot (Leopardus pardalis), from the Mato Grosso state, Brazil. The ocelot had pelvic limb paralysis and skin ulcers in the posterior region of the body and was submitted to euthanasia procedure. At necropsy was observed a multilobulated and irregular shaped, yellowish to white nodule in the urinary bladder. The nodule had a soft consistency and arised from the mucosa of the urinary bladder extending throughout the muscular layers and the serosa. Nodules of similar appearance infiltrating the vertebral column the at L6 and L7 vertebrae with corresponding spinal canal invasion were also observed. The histological evaluation showed epithelial neoplastic proliferation in the urinary bladder with characteristics of nonpapillary and infiltrative TCC, with positive immunohistochemical staining for pancytokeratin, and strong immunostaining for cytokeratin of low molecular weight, and weak or absent labeling for high molecular weight cytokeratin. This is the first report of TCC of urinary bladder in ocelot in Brazil.
Resumo:
A transient significant decrease in mean arterial blood pressure (MAP) from 107 ± 3 to 98 ± 3 mmHg (P<0.05) was observed in elderly (59-69 years of age), healthy volunteers 25-30 min following ingestion of a test meal. In young volunteers (22-34 years of age), a postprandial decrease of MAP from 88 ± 3 to 83 ± 4 mmHg was also noted but it was not statistically significant. A 40% decrease in bradykinin (BK) content of circulatory high molecular weight kininogen had previously been observed in human subjects given the same test meal. We presently demonstrate by specific ELISA that the stable pentapeptide metabolite (1-5 BK) of BK increases from 2.5 ± 1.0 to 11.0 ± 2.5 pg/ml plasma (P<0.05) in elderly volunteers and from 2.0 ± 1.0 to 10.3 ± 3.2 pg/ml plasma (P<0.05) in young volunteers 3 h following food intake. This result suggests that ingestion of food stimulates BK release from kininogen in normal man. Postprandial splanchnic vasodilatation, demonstrated by a decrease of plasma half-life of intravenously administered indocyanine green (ICG), a marker of mesenteric blood flow to the liver, from 4.4 ± 0.4 to 3.0 ± 0.1 min (P<0.05) in young volunteers and from 5.2 ± 1.0 to 4.0 ± 0.5 min (P<0.05) in elderly volunteers, accompanied BK release. The participation of BK in this response was investigated in subjects given the BK-potentiating drug captopril prior to food intake. Postprandial decreases of ICG half-lives were not changed by this treatment in either young or elderly subjects, a result which may indicate that BK released following food intake plays no role in postprandial splanchnic vasodilatation in normal man.
Resumo:
We have studied the effect of peroxynitrite (ONOO-) on the membrane cytoskeleton of red blood cells and its protection by melatonin. Analysis of the protein fraction of the preparation by SDS-PAGE revealed a dose-dependent (0-600 µM ONOO-) disappearance at pH 7.4 of the main proteins: spectrin, band 3, and actin, with the concomitant formation of high-molecular weight aggregates resistant to reduction by ß-mercaptoethanol (2%) at room temperature for 20 min. These aggregates were not solubilized by 8 M urea. Incubation of the membrane cytoskeleton with ONOO- was characterized by a marked depletion of free sulfhydryl groups (50% at 250 µM ONOO-). However, a lack of effect of ß-mercaptoethanol suggests that, under our conditions, aggregate formation is not mediated only by sulfhydryl oxidation. The lack of a protective effect of the metal chelator diethylenetriaminepentaacetic acid confirmed that ONOO--induced oxidative damage does not occur only by a transition metal-dependent mechanism. However, we demonstrated a strong protection against cytoskeletal alterations by desferrioxamine, which has been described as a direct scavenger of the protonated form of peroxynitrite. Desferrioxamine (0.5 mM) also inhibited the loss of tryptophan fluorescence observed when the ghosts were treated with ONOO-. Glutathione, cysteine, and Trolox® (1 mM), but not mannitol (100 mM), were able to protect the proteins against the effect of ONOO- in a dose-dependent manner. Melatonin (0-1 mM) was especially efficient in reducing the loss of spectrin proteins when treated with ONOO- (90% at 500 µM melatonin). Our findings show that the cytoskeleton, and in particular spectrin, is a sensitive target for ONOO-. Specific antioxidants can protect against such alterations, which could seriously impair cell dynamics and generate morphological changes.
Resumo:
The objective of the present study was to establish a method for quantitative analysis of von Willebrand factor (vWF) multimeric composition using a mathematical framework based on curve fitting. Plasma vWF multimers from 15 healthy subjects and 13 patients with advanced pulmonary vascular disease were analyzed by Western immunoblotting followed by luminography. Quantitative analysis of luminographs was carried out by calculating the relative densities of low, intermediate and high molecular weight fractions using laser densitometry. For each densitometric peak (representing a given fraction of vWF multimers) a mean area value was obtained using data from all group subjects (patients and normal individuals) and plotted against the distance between the peak and IgM (950 kDa). Curves were constructed for each group using nonlinear fitting. Results indicated that highly accurate curves could be obtained for healthy controls and patients, with respective coefficients of determination (r²) of 0.9898 and 0.9778. Differences were observed between patients and normal subjects regarding curve shape, coefficients and the region of highest protein concentration. We conclude that the method provides accurate quantitative information on the composition of vWF multimers and may be useful for comparisons between groups and possibly treatments.
Resumo:
JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.
Resumo:
We detected anti-human small nuclear ribonucleoprotein (snRNP) autoantibodies in chagasic patients by different immunological methods using HeLa snRNPs. ELISA with Trypanosoma cruzi total lysate antigen or HeLa human U small nuclear ribonucleoproteins (UsnRNPs) followed by incubation with sera from chronic chagasic and non-chagasic cardiac patients was used to screen and compare serum reactivity. Western blot analysis using a T. cruzi total cell extract was also performed in order to select some sera for Western blot and immunoprecipitation assays with HeLa nuclear extract. ELISA showed that 73 and 95% of chronic chagasic sera reacted with HeLa UsnRNPs and T. cruzi antigens, respectively. The Western blot assay demonstrated that non-chagasic cardiac sera reacted with high molecular weight proteins present in T. cruzi total extract, probably explaining the 31% reactivity found by ELISA. However, these sera reacted weakly with HeLa UsnRNPs, in contrast to the chagasic sera, which showed autoantibodies with human Sm (from Stefanie Smith, the first patient in whom this activity was identified) proteins (B/B', D1, D2, D3, E, F, and G UsnRNP). Immunoprecipitation reactions using HeLa nuclear extracts confirmed the reactivity of chagasic sera and human UsnRNA/RNPs, while the other sera reacted weakly only with U1snRNP. These findings agree with previously reported data, thus supporting the idea of the presence of autoimmune antibodies in chagasic patients. Interestingly, non-chagasic cardiac sera also showed reactivity with T. cruzi antigen and HeLa UsnRNPs, which suggests that individuals with heart disease of unknown etiology may develop autoimmune antibodies at any time. The detection of UsnRNP autoantibodies in chagasic patients might contribute to our understanding of how they develop upon initial T. cruzi infection.
Resumo:
The extract of Ascaris suum suppresses the humoral and cellular immune responses to unrelated antigens in the mouse. In order to further characterize the suppressive components of A. suum, we produced specific monoclonal antibodies which can provide an important tool for the identification of these proteins. The A. suum immunosuppressive fractions isolated by gel filtration from an extract of adult worms were used to immunize BALB/c mice. Popliteal lymph node cells taken from the immunized animals were fused with SP2/O myeloma cells and the cloned hybrid cells obtained were screened to determine the specificity of secreted antibodies. Three monoclonal antibodies named MAIP-1, MAIP-2 and MAIP-3 were selected and were shown to react with different epitopes of high molecular weight proteins from the A. suum extract. All antibody molecules have kappa-type light chains but differ in heavy chain isotype. MAIP-1 is a mouse IgM, MAIP-2 is an IgA immunoglobulin and MAIP-3 is an IgG1 immunoglobulin and they recognize the antigen with affinity constants of 1.3 x 10(10) M-1, 7.1 x 10(9) M-1 and 3.8 x 10(7) M-1, respectively. The proteins recognized by these monoclonal antibodies (PAS-1, PAS-2 and PAS-3) were purified from the crude extract by affinity chromatography and injected with ovalbumin in BALB/c mice in order to determine their suppressive activity on heterologous antibody production. It was demonstrated that these three proteins are able to significantly suppress anti-ovalbumin antibody secretion, with PAS-1 being more efficient than the others.
Resumo:
Plants used in traditional medicine are rich sources of hemolysins and cytolysins, which are potential bactericidal and anticancer drugs. The present study demonstrates for the first time the presence of a hemolysin in the leaves of Passiflora quadrangularis L. This hemolysin is heat stable, resistant to trypsin treatment, has the capacity to froth, and acts very rapidly. The hemolysin activity is dose-dependent, with a slope greater than 1 in a double-logarithmic plot. Polyethylene glycols of high molecular weight were able to reduce the rate of hemolysis, while liposomes containing cholesterol completely inhibited it. In contrast, liposomes containing phosphatidylcholine were ineffective. The Passiflora hemolysin markedly increased the conductance of planar lipid bilayers containing cholesterol but was ineffective in cholesterol-free bilayers. Successive extraction of the crude hemolysin with n-hexane, chloroform, ethyl acetate, and n-butanol resulted in a 10-fold purification, with the hemolytic activity being recovered in the n-butanol fraction. The data suggest that membrane cholesterol is the primary target for this hemolysin and that several hemolysin molecules form a large transmembrane water pore. The properties of the Passiflora hemolysin, such as its frothing ability, positive color reaction with vanillin, selective extraction with n-butanol, HPLC profile, cholesterol-dependent membrane susceptibility, formation of a stable complex with cholesterol, and rapid erythrocyte lysis kinetics indicate that it is probably a saponin.
Resumo:
Changes in plasma von Willebrand factor concentration (VWF:Ag) and ADAMTS-13 activity (the metalloprotease that cleaves VWF physiologically) have been reported in several cardiovascular disorders with prognostic implications. We therefore determined the level of these proteins in the plasma of children with cyanotic congenital heart disease (CCHD) undergoing surgical treatment. Forty-eight children were enrolled (age 0.83 to 7.58 years). Measurements were performed at baseline and 48 h after surgery. ELISA, collagen-binding assays and Western blotting were used to estimate antigenic and biological activities, and proteolysis of VWF multimers. Preoperatively, VWF:Ag and ADAMTS-13 activity were decreased (65 and 71% of normal levels considered as 113 (105-129) U/dL and 91 ± 24% respectively, P < 0.003) and correlated (r = 0.39, P = 0.0064). High molecular weight VWF multimers were not related, suggesting an interaction of VWF with cell membranes, followed by proteolytic cleavage. A low preoperative ADAMTS-13 activity, a longer activated partial thromboplastin time and the need for cardiopulmonary bypass correlated with postoperative bleeding (P < 0.05). Postoperatively, ADAMTS-13 activity increased but less extensively than VWF:Ag (respectively, 2.23 and 2.83 times baseline, P < 0.0001), resulting in an increased VWF:Ag/ADAMTS-13 activity ratio (1.20 to 1.54, respectively, pre- and postoperative median values, P = 0.0029). ADAMTS-13 consumption was further confirmed by decreased ADAMTS-13 antigenic concentration (0.91 ± 0.30 to 0.70 ± 0.25 µg/mL, P < 0.0001) and persistent proteolysis of VWF multimers. We conclude that, in pediatric CCHD, changes in circulating ADAMTS-13 suggest enzyme consumption, associated with abnormal structure and function of VWF.
Resumo:
Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.
Resumo:
Functional and technological properties of wheat depend on its chemical composition, which together with structural and microscopic characteristics, define flour quality. The aim of the present study was to characterize four Brazilian wheat cultivars (BRS Louro, BRS Timbauva, BRS Guamirim and BRS Pardela) and their respective flours in order to indicate specific technological applications. Kernels were analyzed for test weight, thousand kernel weight, hardness, moisture, and water activity. Flours were analyzed for water activity, color, centesimal composition, total dietary fiber, amylose content and identification of high molecular weight glutenins. The rheological properties of the flours were estimated by farinography, extensography, falling number, rapid visco amylography, and glutomatic and glutork equipment. Baking tests and scanning electron microscopy were also performed. The data were subjected to analysis of variance and principal component analysis. BRS Timbauva and BRS Guamirim presented results that did not allow for specific technological application. On the other hand, BRS Louro presented suitable characteristics for the elaboration of products with low dough strength such as cakes, pies and biscuits, while BRS Pardela seemed suitable for bread and pasta products.
Resumo:
Canadian honeys were analyzed for sugar concentration, honey colour, total phenolic content, the level of brown pigments, and antioxidant activity in order to elucidate the main components involved in the antioxidant activity of honey. By employing size-exclusion chromatography in combination with activity-guided fractionation, it was demonstrated that the antioxidant components are of high molecular weight (HMW), brown in colour and absorb at both 280nm and 450nm. The presence of brown HMW antioxidant components prompted an investigation on the influence of heattreatment on the Maillard reaction and the formation of melanoid ins. Heat-treatment of honey resulted in an increase in the level of phenolics in the melanoidin fractions which correlated with an increase in antioxidant activity. The preliminary results of this study suggest for the first time that honey melanoidins underlie the antioxidant activity of unheated and heat-treated honey, and that phenolic constituents are involved in the melanoidin structure and are likely incorporated by covalent or non-covalent interaction.