868 resultados para high carbon tool steel


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Under the United Nations Framework Convention on Climate Change (UNFCCC), Non-Annex 1 countries such as Kenya are obliged to report green house gas (GHG) emissions from all sources where possible, including those from soils as a result of changes in land use or land management. At present, the convention encourages countries to estimate emissions using the most advanced methods possible, given the country circumstances and resources. Estimates of soil organic carbon (SOC) stocks and changes were made for Kenya using the Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. The tool conducts analysis using three methods: (1) the Century general ecosystem model; (2) the RothC soil C decomposition model; and (3) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. The required datasets included: land use history, monthly mean precipitation, monthly mean minimum and maximum temperatures for all the agro-climatic zones of Kenya and historical vegetation cover. Soil C stocks of 1.4-2.0 Pg (0-20 cm), compared well with a Soil and Terrain (SOTER) based approach that estimated similar to .8-2.0 Pg (0-30 cm). In 1990 48% of the country had SOC stocks of < 18 t C ha(-1) and 20% of the country had SOC stocks of 18-30 t C ha(-1), whereas in 2000 56% of the country had SOC stocks of < 18 t C ha(-1) and 31% of the country had SOC stocks of 18-30 t C ha(-1). Conversion of natural vegetation to annual crops led to the greatest soil C losses. Simulations suggest that soil C losses remain substantial throughout the modelling period of 1990-2030. All three methods involved in the GEFSOC System estimated that there would be a net loss of soil C between 2000 and 2030 in Kenya. The decline was more marked with RothC than with Century or the IPCC method. In non-hydric soils the SOC change rates were more pronounced in high sandy soils compared to high clay soils in most land use systems. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO(2)) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO(2) is therefore carried out in a stainless steel batch reactor at 40 degreesC and in a 150 bar CO2/H-2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO(2) is observed through a sapphire window reactor at W-0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The surface geometries of the p (root7- x root7)R19degrees-(4CO) and c(2 x 4)-(2CO) layers on Ni {111} and the clean Ni {111} surface were determined by low energy electron diffraction structure analysis. For the clean surface small but significant contractions of d(12) and d(23) (both 2.02 Angstrom) were found with respect to the bulk interlayer distance (2.03 Angstrom). In the c(2 x 4)-(2CO) structure these distances are expanded, with values of d(12) = 2.08 Angstrom and d(23) = 2.06 Angstrom and buckling of 0.08 and 0.02 Angstrom, respectively, in the first and second layer. CO resides near hcp and fcc hollow sites with relatively large lateral shifts away from the ideal positions leading to unequal C-Ni bond lengths between 1.76 and 1.99 Angstrom. For the p(root7- x root7-)R19'-(4CO) layer two best fit geometries were found, which agree in most of their atomic positions, except for one out of four CO molecules, which is either near atop or between bridge and atop. The remaining three molecules reside near hcp and fcc sites, again with large lateral deviations from their ideal positions. The average C Ni bond length for these molecules is, however, the same as for CO on hollow sites at low coverage. The average CNi bond length at hollow sites, the interlayer distances, and buckling in the first Ni layer are similar to the c(2 x 4)(2CO) geometry, only the buckling in the second layer (0.08 Angstrom) is significantly larger. Lateral and vertical shifts of the Ni atoms in the first layer lead to unsymmetric environments for the CO molecules, which can be regarded as an imprint of the chiral p(root7- x root7-)R19degrees lattice geometry onto the substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon monoxide (CO) concentration data from 1999–2006, monitored at 5 different pollution stations in a high-rise mega city (Hong Kong), were collected and investigated. The spatio-temporal characteristics of urban CO concentration profiles were obtained. A new approach was put forward to examine the relationship between urban CO concentration and different wind flow patterns. Rather than relying on the meteorological data from a single weather station, usually adopted in previous studies, four weather stations on the boundary of Hong Kong territory were used in the present study so as to identify 16 different wind flow patterns, among which a typical urban heat island circulation (UHIC) can be distinguished. Higher concentrations were observed to be associated with the flow pattern of an inflow from Lau Fau Shan (LFS) station which is located in the northwest of Hong Kong. This suggests that the ability of dilution for north-to-west wind is relatively weak due to the pollutants carried from outside Hong Kong. The effectiveness of wind speed on the alleviation of urban concentration is dependent on the initial concentration of the approaching wind. The increase of wind speed of north-to-west wind from 0 m/s to 6 m/s has little effect on the reduction of urban CO concentration, especially on the non-roadside stations. By contrast, for the southerly marine wind, pollution concentration decreases sharply with an increase in the wind speed. It was also found that urban heat island circulation (UHIC) is conducive of the accumulation of pollutants, especially at night. There exists a positive correlation between CO concentration and UHI intensity. This correlation is much stronger at night compared to during the day. Keywords: urban pollution monitoring, urban ventilation pattern, urban heat island circulation, mega city

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results: We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions: Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon monoxide is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can modulate the intracellular production of reactive oxygen species, nitric oxide and cGMP levels, as well as regulate MAP kinase signalling. In this review, we consider ion channels as more recently discovered effectors of CO signalling. CO is now known to regulate a growing number of different ion channel types, and detailed studies of the underlying mechanisms of action are revealing unexpected findings. For example, there are clear areas of contention surrounding its ability to increase the activity of high conductance, Ca2+ -sensitive K+ channels. More recent studies have revealed the ability of CO to inhibit T-type Ca2+ channels and have unveiled a novel signalling pathway underlying tonic regulation of this channel. It is clear that the investigation of ion channels as effectors of CO signalling is in its infancy, and much more work is required to fully understand both the physiological and the toxic actions of this gas. Only then can its emerging use as a therapeutic tool be fully and safely exploited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon monoxide (CO) is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins, it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can modulate the intracellular production of reactive oxygen species, NO and cGMP levels, as well as regulate MAPK signalling. In this review, we consider ion channels as more recently discovered effectors of CO signalling. CO is now known to regulate a growing number of different ion channel types, and detailed studies of the underlying mechanisms of action are revealing unexpected findings. For example, there are clear areas of contention surrounding its ability to increase the activity of high conductance, Ca2+ -sensitive K+ channels. More recent studies have revealed the ability of CO to inhibit T-type Ca2+ channels and have unveiled a novel signalling pathway underlying tonic regulation of this channel. It is clear that the investigation of ion channels as effectors of CO signalling is in its infancy, and much more work is required to fully understand both the physiological and the toxic actions of this gas. Only then can its emerging use as a therapeutic tool be fully and safely exploited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wider economic benefits resulting from extended geographical mobility is one argument for investments in high-speed rail. More specifically, the argument for high-speed trains in Sweden has been that they can help to further spatially extend labor market regions which in turn has a positive effect on growth and development. In this paper the aim is to cartographically visualize the potential size of the labor markets in areas that could be affected by possible future high-speed trains. The visualization is based on the forecasts of labor mobility with public transport made by the Swedish national mobility transport forecasting tool, SAMPERS, for two alternative high-speed rail scenarios. The analysis, not surprisingly, suggests that the largest impact of high-speed trains results in the area where the future high speed rail tracks are planned to be built. This expected effect on local labor market regions of high-speed trains could mean that possible regional economic development effects also are to be expected in this area. However, the results, in general, from the SAMPERS forecasts indicaterelatively small increases in local labor market potentials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This licentiate thesis has the main focus on evaluation of the wear of coated and uncoated polycrystalline cubic boron nitride cutting tool used in cutting operations against hardened steel. And to exam the surface finish and integrity of the work material used. Harder work material, higher cutting speed and cost reductions result in the development of harder and more wear resistance cutting tools. Although PCBN cutting tools have been used in over 30 years, little work have been done on PVD coated PCBN cutting tools. Therefore hard turning and hard milling experiments with PVD coated and uncoated cutting tools have been performed and evaluated. The coatings used in the present study are TiSiN and TiAlN. The wear scar and surface integrity have been examined with help of several different characterization techniques, for example scanning electron microscopy and Auger electron spectroscopy.   The results showed that the PCBN cutting tools used displayed crater wear, flank wear and edge micro chipping. While the influence of the coating on the crater and flank wear was very small and the coating showed a high tendency to spalling. Scratch testing of coated PCBN showed that, the TiAlN coating resulted in major adhesive fractures. This displays the importance of understanding the effect of different types of lapping/grinding processes in the pre-treatment of hard and super hard substrate materials and the amount and type of damage that they can create. For the cutting tools used in turning, patches of a adhered layer, mainly consisting of FexOy were shown at both the crater and flank. And for the cutting tools used in milling a tribofilm consisting of SixOy covered the crater. A combination of tribochemical reactions, adhesive wear and mild abrasive wear is believed to control the flank and crater wear of the PCBN cutting tools. On a microscopic scale the difference phases of the PCBN cutting tool used in turning showed different wear characteristics. The machined surface of the work material showed a smooth surface with a Ra-value in the range of 100-200 nm for the turned surface and 100-150 nm for the milled surface. With increasing crater and flank wear in combination with edge chipping the machined surface becomes rougher and showed a higher Ra-value. For the cutting tools used in milling the tendency to micro edge chipping was significant higher when milling the tools steels showing a higher hard phase content and a lower heat conductivity resulting in higher mechanical and thermal stresses at the cutting edge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.