982 resultados para he Johansen Co-integration
Resumo:
The main purpose of this paper is to present architecture of automated system that allows monitoring and tracking in real time (online) the possible occurrence of faults and electromagnetic transients observed in primary power distribution networks. Through the interconnection of this automated system to the utility operation center, it will be possible to provide an efficient tool that will assist in decisionmaking by the Operation Center. In short, the desired purpose aims to have all tools necessary to identify, almost instantaneously, the occurrence of faults and transient disturbances in the primary power distribution system, as well as to determine its respective origin and probable location. The compilations of results from the application of this automated system show that the developed techniques provide accurate results, identifying and locating several occurrences of faults observed in the distribution system.
Resumo:
The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect.
Resumo:
This work evaluates the glass formation of selected alloys based on the Ti-Zr-Fe-Co system, assuming the synergy of two distinct criteria: minimum topological instability and average electronegativity plots. Combining the minimum topological instability and the average electronegativity values result in a plot in which the most probable good glass former compositions are identified Ti-Zr rich alloys with Fe and Co additions were produced, compared against the final plot, and the best glass forming alloy composition was found to be very close the theoretically predicted ones on the Ti-Zr rich side, for both Ti-Zr-Fe and Ti-Zr-Co systems. (C) 2009 Elsevier B V All rights reserved
Resumo:
Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NO(x), SO(2), and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O(2)/N(2) and O(2)/CO(2) environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NO(x) emissions in O(2)/CO(2) environments were lower than those in O(2)/N(2) environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NO(x) reductions ranged from 22 to 39%. NO(x) emissions were found to increase with increasing oxygen mole fraction until similar to 50% O(2) was reached; thereafter, they monotonically decreased with increasing oxygen concentration. NO(x) emissions from the various fuels burned did not clearly reflect their nitrogen content (0.2-1.4%), except when large content differences were present. SO(2) emissions from all fuels remained largely unaffected by the replacement of the N(2) diluent gas with CO(2), whereas they typically increased with increasing sulfur content of the fuels (0.07-1.4%) and decreased with increasing calcium content of the fuels (0.28-2.7%). Under the conditions of this work, 20-50% of the fuel-nitrogen was converted to NO(x). The amount of fuel-sulfur converted to SO(2) varied widely, depending on the fuel and, in the case of the bituminous coal, also depending on the O(2) mole fraction. Blending the sub-bituminous coal with bagasse reduced its SO(2) yields, whereas blending the bituminous coal with bagasse reduced both its SO(2) and NO(x) yields. CO emissions were generally very low in all cases. The emission trends were interpreted on the basis of separate combustion observations.
Resumo:
This paper reports on design of digital control for wind turbines and its relation to the quality of power fed into the Brazilian grid on connecting to it a 192 MW wind farm equipped with doubly fed induction generators. PWM converters are deployed as vector controlled regulated current voltage sources for their rotors, for independent control of both active and reactive power of those generators. Both speed control and active power control strategies are analyzed, in the search for maximum efficiency of conversion of wind kinetic energy into electric power and enhanced quality of delivered power. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Tungsten carbide has a wide range of applications, mainly cemented carbides made of WC and Co, as wear resistant materials. However, the high cost of WC-Co powders encourages the use of a substrate to manufacture a functionally graded material (FGM) tool made of WC-Co and a tool steel. These materials join the high wear resistance of the cemented carbide and the toughness of the steel. This work deals with the study interaction of the WC-Co and H13 steel to design a functionally graded material by means of spark plasma sintering (SPS). The SPS, a novel sintering technique reaching the consolidation of the powders at relatively low temperatures and short dwell times, is a promising technique in processing materials. In this study, WC, H13 steel, WC-Co, WC-H13 steel and WC-Co-H13 steel bulk samples were investigated using scanning electron microscopy and X-ray diffraction techniques to evaluate the phase transformations involved during SPS consolidation process. The W(2)C and W(3)Fe(3)C precipitation were identified after the SPS consolidation of the WC and WC-H13 steel samples, respectively. The precipitation Of W(4)Co(2)C was also identified in the WC-Co and WC-Co-H13 steel samples. The WC-H 13 steel and WC-Co-H13 steel were also evaluated after heat treatments at 1100 degrees C for 9 h, which enhanced the chemical interaction and the precipitation of W(3)Fe(3)C and W(4)Co(2)C, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Hybrid latices of poly(styrene-co-butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer-MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 3658-3669, 2011
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.
Resumo:
Using the network random generation models from Gustedt (2009)[23], we simulate and analyze several characteristics (such as the number of components, the degree distribution and the clustering coefficient) of the generated networks. This is done for a variety of distributions (fixed value, Bernoulli, Poisson, binomial) that are used to control the parameters of the generation process. These parameters are in particular the size of newly appearing sets of objects, the number of contexts in which new elements appear initially, the number of objects that are shared with `parent` contexts, and, the time period inside which a context may serve as a parent context (aging). The results show that these models allow to fine-tune the generation process such that the graphs adopt properties as can be found in real world graphs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Tabasco pepper production with CO(2) application using drip irrigation. Application of CO(2) through water reduces the soil solution pH, causing variations in nutrient mobility and consequent effects on the absorption. The objective of this study was to analyze the effects of carbon dioxide rates supplied by drip irrigation in the production of Capsicum frutescens L. crop. A randomized block design with four treatments and eight replications was used. The treatments were four rates of CO(2): 0 (T1), 451.95 (T2); 677.93 (T3) and 903.92 (T4) kg ha(-1). The fruits were counted and weighed; the length and the diameter were obtained from an average of 20 fruits per plant, randomly taken, from each treatment in the plot. The quadratic effect (p < 0.01) occurred for CO(2) on the yield and there was quadratic effect (p < 0.05) of the rates on the number of fruits. There were no effects of CO(2) rates on the green matter, dry matter and fruit length and diameter. The T2 treatment provided greater yield and higher number of fruits per plant with an increase of 16 and 26%, respectively in relation to T1 (without CO(2)). CO(2) application favored the increase in the yield because of the greater number of fruits per plant in the Tabasco pepper crop.
Resumo:
We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three-and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined similar to 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 mu mol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by similar to 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 mu mol C mol N(-1) s(-1) at 20 degrees C).
Resumo:
We standardized serodiagnosis of dogs infected with Trypanosoma cruzi using TESA (trypomastigote excreted-secreted antigen)-blot developed for human Chagas disease. TESA-blot showed 100% sensitivity and specificity. In contrast, ELISA using TESA (TESA-ELISA) or epimastigotes (epi-ELISA) as antigen yielded 100% sensitivity but specificity of 94.1% and 49.4%, respectively. When used in field studies in an endemic region for Chagas disease, visceral leishmaniasis and Trypanosoma evansi (Mato Grosso do Sul state, Central Brazil), positivities were 9.3% for TESA-blot, 10.7% for TESA-ELISA and 32% for epi-ELISA. Dogs from a non-endemic region for these infections (Rondonia state, western Amazonia) where T cruzi is enzootic showed positivity of 4.5% for TESA-blot and epi-ELISA and 6.8% for TESA-ELISA. Sera from urban dogs from Santos, Sao Paulo, where these diseases are absent, yielded negative results. TESA-blot was the only method that distinguished dogs infected with T cruzi from those infected with Leishmania chagasi and/or Trypanosoma evansi. (C) 2009 Published by Elsevier B.V.
Resumo:
P>The Arabidopsis thylakoid FtsH protease complex is composed of FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. Type A and type B subunits display a high degree of sequence identity throughout their mature domains, but no similarity in their amino-terminal targeting peptide regions. In chloroplast import assays, FtsH2 and FtsH5 were imported and subsequently integrated into thylakoids by a two-step processing mechanism that resulted in an amino-proximal lumenal domain, a single transmembrane anchor, and a carboxyl proximal stromal domain. FtsH2 integration into washed thylakoids was entirely dependent on the proton gradient, whereas FtsH5 integration was dependent on NTPs, suggesting their integration by Tat and Sec pathways, respectively. This finding was corroborated by in organello competition and by antibody inhibition experiments. A series of constructs were made in order to understand the molecular basis for different integration pathways. The amino proximal domains through the transmembrane anchors were sufficient for proper integration as demonstrated with carboxyl-truncated versions of FtsH2 and FtsH5. The mature FtsH2 protein was found to be incompatible with the Sec machinery as determined with targeting peptide-swapping experiments. Incompatibility does not appear to be determined by any specific element in the FtsH2 domain as no single domain was incompatible with Sec transport. This suggests an incompatible structure that requires the intact FtsH2. That the highly homologous type A and type B subunits of the same multimeric complex use different integration pathways is a striking example of the notion that membrane insertion pathways have evolved to accommodate structural features of their respective substrates.
Resumo:
Saran F-310 resin (Dow Chemical Co, Midland, MI) has been widely used to coat soil clods for density and size measurements; however, the manufacturer has recently stopped producing this resin and supplies are difficult to obtain. Hence, we evaluated the feasibility of using Lazzudur 7502 (Sherwin-Williams, Cleveland, OH) automotive varnish to coat soil clods for density measurement. Preliminary evaluations showed that immersion of clods in the varnish did nor affect clod cohesion and that a single immersion in Lazzudur with 30 min of post-immersion drying produced density results nor significantly (P < 0.05) different to those obtained using saran. This technique was tested across seven soils and no significant (P < 0.05) difference was found in the density of the clods measured using the two coating methods. This work suggests that automotive varnish can he used as an alternative to saran resin for clod density measurements.