973 resultados para harmonic approximation
Resumo:
It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite number of closed orbits for suitable angular momentum values. At the aphelion (perihelion) points of classical orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional (2D) Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU(2) are still preserved at the aphelion (perihelion) points of classical orbits, respectively. For the screened 3D Coulomb potential, the dynamical symmetry SO4 is also preserved at the aphelion (perihelion) points of classical orbits. But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU(2) is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoordinate system. For the screened Coulomb potential and isotropic harmonic oscillator, only the energy (but not angular momentum) raising and lowering operators can be constructed from a factorization of the radial Schrodinger equation.
Resumo:
For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.
Resumo:
The first-passage time of Duffing oscillator under combined harmonic and white-noise excitations is studied. The equation of motion of the system is first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. Numerical results for two resonant cases with several sets of parameter values are obtained and the analytical results are verified by using those from digital simulation.
Resumo:
A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
Resumo:
In this part of the present work, a simplified model—the thin transition layer theory is proposed. The comparison of this model with the G-L sheet model is made.