368 resultados para hardening


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processo FAPESP: 2012/24545-3

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of the investigation on Solution Heat Treatment of Plasma Nitrided (SHTPN) precipitation-hardened steel 15-5PH are presented. The layers have been obtained by the plasma nitriding process followed by solution heat treatment at different temperatures. The influence of the solution heat treatment after nitriding on the dissolution process of the nitrided layer has been considered. The nitrided layers were studied by scanning electron microscopy, X-ray microanalysis (EDX), and X-Ray diffraction. Micro-hardness tests of the nitrided layers and solubilized nitrided layers have been carried out and interpreted by considering the processing conditions. It was found that high nitrogen austenitic cases could be obtained after SHTPN of martensitic precipitation-hardened steel (15-5PH). When Solution Heat Treatment (SHT) was performed at 1100 °C, some precipitates were observed. The amount of precipitates significantly reduced when the temperature increased. The EDX microanalysis indicated that the precipitate may be chromium niobium nitride. When the precipitation on the austenite phase occurred in small amount, the corrosion resistance increased in SHTPN specimens and the pit nucleation potential also increased. The best corrosion result occurred for SHT at 1200 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on analysing the effects of nonlinear torsional stiffness on the dynam-ics of a slender elastic beam under torsional oscillations, which can be subject to helical buckling.The helical buckling of an elastic beam confined in a cylinder is relevant to many applications. Someexamples include oil drilling, medical cateters and even the conformation and functioning of DNAmolecules. A recent study showed that the formation of the helical configuration is a result of onlythe torsional load, confirming that there is a different path to helical buckling which is not related tothe sinusoidal buckling, stressing the importance of the geometrical behaviour of the beam. A lowdimensional model of an elastic beam under torsional oscillations is used to analyse its dynamical be-haviour with different stiffness characteristics, which are present before and after the helical buckling.Hardening and softening characteristics are present, as the effects of torsion and bending are coupled.With the use of numerical algorithms applied to nonlinear dynamics, such as bifurcation diagramsand basins of attraction, it is shown that the nonlinear stiffness can shift the bifurcations and inducechanges in the stability of the desirable and undesirable solutions. Therefore, the proper modellingof these stiffness nonlinearities seems to be important for a better understanding of the dynamicalbehaviour of such beams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ti and its alloys are widely used as biomaterials. Their main properties are excellent corrosion resistance, relatively low elastic modulus, high specific strength, and good biocompatibility. The development of new Ti alloys with properties favorable for use in the human body is desired. To this end, Ti alloys with Mo, Nb, Zr, and Ta are being developed, because these elements do not cause cytotoxicity. The presence of interstitial elements (such as oxygen and nitrogen) induces strong changes in the elastic properties of the material, which leads to hardening or softening of the alloy. By means of anelastic spectroscopy, we are able to obtain information on the diffusion of these interstitial elements present in the crystalline lattice. In this paper, the effect of oxygen on the anelastic properties of some binary Ti-based alloys was analyzed with anelastic spectroscopy. The diffusion coefficients, pre-exponential factors, and activation energies were calculated for oxygen and nitrogen in these alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Enfermagem (mestrado profissional) - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the large use of steel in several processes around the world, there is the increasingly concern to find new materials and/or optimization and improvement of the processes, as the need to reduce the cost and a productivity increase in the primary industry, such as the siderurgy. The rolling is the most used mechanical process in the world and therefore is required the development of new tools in high volume and with optimum characteristics to support the market demand. Forged rolls used are for rolling. These rolls have heat treatment that has the purpose to achieve the appropriated mechanical properties to support the variables of the rolling process. The objective of this work is to analyze the hardness profile and the microstructure a tool steel similar to AISI A2, forged in an opened die process and submitted to heat treatment with water-cooling. The results allowed plotting a hardness profile and performing a microstructure analysis, and whereby to confirm that the heat treatment is not a quenching, but it is a material beneficiation by the hardening of superficial layer, since there is no martensitic microstructure. Therefore, this paper provides the support to future studies about the possibility to perform enhancements in this thermal heat made in the rolls produced at Gerdau Plant in Pindamonhangaba

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the large use of steel in several processes around the world, there is the increasingly concern to find new materials and/or optimization and improvement of the processes, as the need to reduce the cost and a productivity increase in the primary industry, such as the siderurgy. The rolling is the most used mechanical process in the world and therefore is required the development of new tools in high volume and with optimum characteristics to support the market demand. Forged rolls used are for rolling. These rolls have heat treatment that has the purpose to achieve the appropriated mechanical properties to support the variables of the rolling process. The objective of this work is to analyze the hardness profile and the microstructure a tool steel similar to AISI A2, forged in an opened die process and submitted to heat treatment with water-cooling. The results allowed plotting a hardness profile and performing a microstructure analysis, and whereby to confirm that the heat treatment is not a quenching, but it is a material beneficiation by the hardening of superficial layer, since there is no martensitic microstructure. Therefore, this paper provides the support to future studies about the possibility to perform enhancements in this thermal heat made in the rolls produced at Gerdau Plant in Pindamonhangaba

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the analysis of instrumented indentation data, it is common practice to incorporate the combined moduli of the indenter (E-i) and the specimen (E) in the so-called reduced modulus (E-r) to account for indenter deformation. Although indenter systems with rigid or elastic tips are considered as equivalent if E-r is the same, the validity of this practice has been questioned over the years. The present work uses systematic finite element simulations to examine the role of the elastic deformation of the indenter tip in instrumented indentation measurements and the validity of the concept of the reduced modulus in conical and pyramidal (Berkovich) indentations. It is found that the apical angle increases as a result of the indenter deformation, which influences in the analysis of the results. Based upon the inaccuracies introduced by the reduced modulus approximation in the analysis of the unloading segment of instrumented indentation applied load (P)-penetration depth (delta) curves, a detailed examination is then conducted on the role of indenter deformation upon the dimensionless functions describing the loading stages of such curves. Consequences of the present results in the extraction of the uniaxial stress-strain characteristics of the indented material through such dimensional analyses are finally illustrated. It is found that large overestimations in the assessment of the strain hardening behavior result by neglecting tip compliance. Guidelines are given in the paper to reduce such overestimations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, different methods to estimate the value of thin film residual stresses using instrumented indentation data were analyzed. This study considered procedures proposed in the literature, as well as a modification on one of these methods and a new approach based on the effect of residual stress on the value of hardness calculated via the Oliver and Pharr method. The analysis of these methods was centered on an axisymmetric two-dimensional finite element model, which was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. Simulations were conducted varying the level of film residual stress, film strain hardening exponent, film yield strength, and film Poisson's ratio. Different ratios of maximum penetration depth h(max) over film thickness t were also considered, including h/t = 0.04, for which the contribution of the substrate in the mechanical response of the system is not significant. Residual stresses were then calculated following the procedures mentioned above and compared with the values used as input in the numerical simulations. In general, results indicate the difference that each method provides with respect to the input values depends on the conditions studied. The method by Suresh and Giannakopoulos consistently overestimated the values when stresses were compressive. The method provided by Wang et al. has shown less dependence on h/t than the others.