953 resultados para gut extract


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20cm in elevation, and 40cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data, and thus assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50ms apart, elevations have a local standard deviation in height of 3.5cm, enabling the local measurement of surface roughness of the order of 5cm. Points acquired seconds apart acquire an additional random error due to Differential Geographic Positioning System (DGPS) fluctuation. Measurements made up to an hour apart show an elevation drift of 7cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4cm. The RMS planimetric error in point location was derived as 37.4cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the UK, intertidal zone monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultraperformance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats.Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0±10.4%) andheart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influencedbymicrobial activitiesormodulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to determine the effect of feeding rumen-inert fats differing in their degree of saturation on dry matter intake (DMI), milk production, and plasma concentrations of insulin, glucagon-like peptide 1 (7-36) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (CCK) in lactating dairy cows. Four midlactation, primiparous Holstein cows were used in a 4 x 4 Latin square experiment with 2-wk periods. Cows were fed a control mixed ration ad libitum, and treatments were the dietary addition (3.5% of ration dry matter) of 3 rumen-inert fats as sources of mostly saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), or polyunsaturated fatty acids (PUFA). Daily DMI, milk yield, and composition were measured on the last 4 d of each period. Jugular vein blood was collected every 30 min over a 7-h period on d 12 and 14 of each period for analysis of plasma concentrations of hormones, glucose, and nonesterified fatty acids. Feeding fat decreased DMI, and the decrease tended to be greater for MUFA and PUFA compared with SFA. Plasma concentration of GLP-1 increased when fat was fed and was greater for MUFA and PUFA. Feeding fat increased plasma glucose-dependent insulinotropic polypeptide and CCK concentrations and decreased plasma insulin concentration. Plasma CCK concentration was greater for MUFA and PUFA than for SFA and was greater for MUFA than PUFA. Decreases in DMI in cows fed fat were associated with increased plasma concentrations of GLP-1 and CCK and a decreased insulin concentration. The role of these peptides in regulating DMI in cattle fed fat requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of transition from late gestation to early lactation on plasma concentrations of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1-(7-36) amide (GLP-1), and cholecystokinin (CCK) have not been reported in cattle. The objective of the present study was to measure plasma concentrations of GLP-1, GIP, CCK, insulin, glucose, and nonesterified fatty acids in blood plasma obtained from the coccygeal vein of 32 Holstein cows at an average of 11 d before, and 5, 12, and 19 d after calving. Feed dry matter intake (DMI) averaged 14.4, 17.7, and 19.9 kg/d on d 5, 12, and 19 of lactation, respectively, as milk yield increased (30.6, 36.6, and 39.7 kg/d, respectively). Plasma concentrations of insulin and glucose were lower postpartum than prepartum, but did not differ among samples collected after calving. In contrast, plasma concentration of gut peptides increased linearly after calving, perhaps as a consequence of increased feed intake and nutrient absorption; however, the increases in plasma concentrations of GIP and GLP-1 as lactation progressed were not associated with increased DMI per se, and likely reflect the endocrine and metabolic adaptations of lactogenesis. In contrast, increased concentration of CCK was related both to increasing days in milk and DMI. By 19 d postpartum, concentrations of GLP-1, GIP, and CCK increased by 2.3-, 1.8-, and 2.8-fold, respectively, compared with values at 11 d before calving. Although these peptides have direct and indirect effects that reduce appetite and DMI in other species (including increased insulin secretion), these may be glucose- or insulin-dependent functions, and insulin and glucose concentrations were reduced in early lactation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extensive development of the ruminant forestomach sets apart their N economy from that of nonruminants in a number of respects. Extensive pregastric fermentation alters the profile of protein reaching the small intestine, largely through the transformation of nitrogenous compounds into microbial protein. This process is fueled primarily by carbohydrate fermentation and includes extensive recycling of N between the body and gut lumen pools. Nitrogen recycling occurs via blood and gut lumen exchanges of urea and NH3, as well as endogenous gut and secretory N entry into the gut lumen, and the subsequent digestion and absorption of microbial and endogenous protein. Factors controlling urea transfer to the gut from blood, including the contributions of urea transporters, remain equivocal. Ammonia produced by microbial degradation of urea and dietary and endogenous AA is utilized by microbial fermentation or absorbed and primarily converted to urea. Therefore, microbial growth and carbohydrate fermentation affect the extent of NH3 absorption and urea N recycling and excretion. The extensive recycling of N to the rumen represents an evolutionary advantage of the ruminant in terms of absorbable protein supply during periods of dietary protein deficiency, or asynchronous carbohydrate and protein supply, but incurs a cost of greater N intakes, especially in terms of excess N excretion. Efforts to improve the efficiency of N utilization in ruminants by synchronizing fermentable energy and N availability have generally met with limited success with regards to production responses. In contrast, imposing asynchrony through oscillating dietary protein concentration, or infrequent supplementation, surprisingly has not negatively affected production responses unless the frequency of supplementation is less than once every 3 d. In some cases, oscillation of dietary protein concentration has improved N retention compared with animals fed an equal amount of dietary protein on a daily basis. This may reflect benefits of Orn cycle adaptations and sustained recycling of urea to the gut. The microbial symbiosis of the ruminant is inherently adaptable to asynchronous N and energy supply. Recycling of urea to the gut buffers the effect of irregular dietary N supply such that intuitive benefits of rumen synchrony in terms of the efficiency of N utilization are typically not observed in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waterbirds have been proposed as important vectors for the passive dispersal of those aquatic invertebrates and plants that lack a capacity for active dispersal between isolated water bodies. We analysed the frequency of internal transport of bryozoan propagules (statoblasts) by waterbirds in Donana, Spain, by examining their presence in the intestines and ceca of dead birds and analysing the role of different aspects of gut characteristics in explaining variation in the presence/absence and abundance of statoblasts. Of the 228 samples examined, 7.9% presented intact statoblasts of Plumatella fungosa (Pallas, 1768), Plumatella emarginata Allman, 1844, and two unidentified Plumatella species. For a given bird species, individuals with heavier gizzards and shorter ceca had a lower incidence and abundance of statoblasts in the lower gut. Grit mass and intestine length were unrelated to the presence or abundance of statoblasts. Our results suggest that waterbirds frequently transport bryozoans on a local scale, with lighter gizzards and longer ceca favouring such transport. Lighter gizzards are likely to destroy fewer propagules before they reach the lower gut. Species and individuals with longer ceca are particularly good candidates for long-distance dispersal of bryozoans, given the longer passage time of propagules that enter the ceca.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The partitioning of minor trivalent actinides (An) from lanthanides (Ln) is one of the challenges in the chemical treatment of nuclear waste. The optimal ligand to carry out the separation of An(III) and Ln(III) using solvent extraction has to meet several important criteria: high selectivity towards the solute, chemical and radiolytic stability, stripping possibilities and recycling of the organic phase, high separation factors and good distribution ratio, to name just a few of them. A chronological line can be drawn along the development of each extraction ligand family and some milestones are emphasized in this overview. Further developments in organic synthesis of extracting ligands are expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemostat culture was used to determine the effects of the antimicrobial agents tetracycline and nystatin on predominant components of the human gut microflora. Their addition to mixed culture systems caused a non-specific, and variable, decrease in microbial populations, although tetracycline allowed an increase in numbers of yeasts. Both had a profound inhibitory effect upon populations seen as important for gut health (bifidobacteria, lactobacilli). However, a tetracycline resistant Lactobacillus was enriched from the experiments. A combination of genotypic and phenotypic characterisations confirmed its identity as Lactobacillus plantarum. This strain exerted powerful inhibitory effects against Candida albicans. Because of its ability to resist the effects of tetracycline, this organism may be useful as a probiotic for the improved management of yeast related conditions such as thrush and irritable bowel syndrome. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EGb 761 is a standardized extract from the Ginkgo biloba leaf and is purported to improve age-related memory impairment. The acute and chronic effect of EGb 761 on synaptic transmission and plasticity in hippocampal slices from young adult (8-12 weeks) and aged (18-24 months) C57B1/6 mice was tested because hippocampal plasticity is believed to be a key component of memory. Acutely applied EGb 761 significantly increased neuronal excitability in slices from aged mice by reducing the population spike threshold and increased the early phase of long-term potentiation, though there was no effect in slices from young adults. In chronically treated mice fed for 30 days with an EGb 761-supplemented diet, EGb 761 significantly increased the population spike threshold and long-term potentiation in slices from aged animals, but had no effect on slices from young adults. The rapid effects of EGb 761 on plasticity indicate a direct interaction with the glutamatergic system and raise interesting implications with respect to a mechanism explaining its effect on cognitive enhancement in human subjects experiencing dementia. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing awareness of the role that the colonic microflora plays in maintaining host health within the gastrointestinal tract and systemically through the absorption of metabolites, has attracted a lot of interest, within the nutritional sciences, in developing dietary tools for controlling the colonic microflora. Among those dietary tools, prebiotics aim to improve health by stimulating numbers and/or activities of the beneficial bacteria in the gut, mainly bifidobacteria and lactobacilli. The ability of incorporating prebiotics in various food processes together with recent developments in understanding how prebiotics are metabolised by health promoting bacteria, allow us to specifically aim such dietary interventions towards selected population groups, such as infants and elderly, and disease states, such as colon cancer and irritable bowel disease.