973 resultados para graph anonymization
Resumo:
The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the two-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges. ©2002 The American Physical Society.
Resumo:
This thesis includes analysis of disordered spin ensembles corresponding to Exact Cover, a multi-access channel problem, and composite models combining sparse and dense interactions. The satisfiability problem in Exact Cover is addressed using a statistical analysis of a simple branch and bound algorithm. The algorithm can be formulated in the large system limit as a branching process, for which critical properties can be analysed. Far from the critical point a set of differential equations may be used to model the process, and these are solved by numerical integration and exact bounding methods. The multi-access channel problem is formulated as an equilibrium statistical physics problem for the case of bit transmission on a channel with power control and synchronisation. A sparse code division multiple access method is considered and the optimal detection properties are examined in typical case by use of the replica method, and compared to detection performance achieved by interactive decoding methods. These codes are found to have phenomena closely resembling the well-understood dense codes. The composite model is introduced as an abstraction of canonical sparse and dense disordered spin models. The model includes couplings due to both dense and sparse topologies simultaneously. The new type of codes are shown to outperform sparse and dense codes in some regimes both in optimal performance, and in performance achieved by iterative detection methods in finite systems.
Resumo:
In this paper we propose an approach based on self-interested autonomous cameras, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to grow the vision graph during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online which permits the addition and removal cameras to the network during runtime and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multi-camera calibration can be avoided. © 2011 IEEE.
Resumo:
In this article we present an approach to object tracking handover in a network of smart cameras, based on self-interested autonomous agents, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to learn the vision graph, that is, the camera neighbourhood relations, during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online, enabling efficient deployment in unknown scenarios and camera network topologies, and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multicamera calibration can be avoided. We have evaluated our approach both in a simulation study and in network of real distributed smart cameras.
Resumo:
Graph embedding is a general framework for subspace learning. However, because of the well-known outlier-sensitiveness disadvantage of the L2-norm, conventional graph embedding is not robust to outliers which occur in many practical applications. In this paper, an improved graph embedding algorithm (termed LPP-L1) is proposed by replacing L2-norm with L1-norm. In addition to its robustness property, LPP-L1 avoids small sample size problem. Experimental results on both synthetic and real-world data demonstrate these advantages. © 2009 Elsevier B.V. All rights reserved.
Resumo:
We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large girth and their cryptographical applications. It contains new explicit algebraic constructions of in finite families of such graphs. We show that they can be used for the implementation of secure and very fast symmetric encryption algorithms. The symbolic computations technique allow us to create a public key mode for the encryption scheme based on algebraic graphs.