969 resultados para germination seed
Resumo:
Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.
Resumo:
Chickpea seed germination was carried out over a period of 6 days. Little variation in the nitrogen and total globulin content was observed. The major globulin (11 S type) showed higher variation after the 4th day of germination. The elution behaviour and distribution of the isolated major globulin fraction on Sepharose CL-6B chromatography showed little modification at the end of germination. On SDS-PAGE the peak eluted from Sepharose CL-6B showed changes in protein bands between 20 and 30 kDa and above 60 kDa, indicating protein degradation during the period. Proteolytic activity was detected in the albumin fraction of the seeds, which increased up to the fourth and then decreased up to the sixth day, when isolated chickpea total globulin and casein were used as substrates. Chickpea flour, isolated albumin and total globulin fractions did not show an increase for in vitro digestibility; however, the isolated major globulin was more susceptible to hydrolysis after germination.
Resumo:
This study analyzed the drying process and the seed quality of adzuki beans (Vigna angularis). Grains of adzuki beans, with moisture content of 1.14 (decimal dry basis) at harvest and dried until the moisture content of 0.11 (decimal dry basis.) were used. Drying was done in an experimental drier maintened at controlled temperatures of 30, 40, 50, 60, and 70 ºC and relative humidity of 52.0, 28.0, 19.1, 13.1, and 6.8%, respectively. Physiological and technological seed quality was evaluated using the germination test, Index of Germination Velocity (IGV), electrical conductivity, and water absorption, respectively. Under the conditions tested in the present study, it can be concluded that drying time for adzuki beans decreases with the higher air temperatures of 60 and 70 ºC, and it affected the physiological and technological seed quality. Thus, to avoid compromising adzuki seeds quality, it is recommended to promote its drying up to 50 ºC.
Resumo:
Under subtropical and tropical environments soybean seed (Glycine max (L.) Merrill) are harvested early to avoid deterioration from weathering. Careful after-harvest drying is required and is an important step in maintaining the physiological quality of the seed. Soybean seed should be harvested when the moisture content is in a range of 16-20%. Traditional drying utilizes a high temperature air stream passed through the seed mass without dehumidification. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the seed. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is passed through the seed mass at the same environmental temperature. Two studies were conducted to evaluate the performance of HPT for dry soybean seed. In the first study the seeds were dried from 17.5 to 11.1% in 2 hours and 29 minutes and in the second sudy the seeds were dried from 22.6 to 11.9% in 16 hours and 32 minutes. This drying process caused no reduction in seed quality as measured by the standard germination, tetrazolium-viability, accelerated aging and seedling vigor classification tests. The only parameter that indicated a slight seed quality reduction was tetrazolium vigor in the second study. It was concluded that the HPT system is a promising technology for drying soybean seed when efficiency and maintenance of physiological quality are desired.
Resumo:
The moisture content of peanut kernel (Arachis hypogaea L.) at digging ranges from 30 to 50% on a wet basis (w.b.). The seed moisture content must be reduced to 10.5% or below before seeds can be graded and marketed. After digging, peanuts are cured on a window sill for two to five days then mechanically separated from the vine. Heated air is used to further dry the peanuts from approximately 18 to 10% moisture content w.b. Drying is required to maintain peanut seed and grain quality. Traditional dryers pass a high temperature and high humidity air stream through the seed mass. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the kernels. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is heated and passed through the seed. A study was conducted to evaluate the performance of the HPT system in drying peanut seed. The seeds inside the shells were dried from 17.4 to 7.3% in 14 hours and 11 minutes, with a rate of moisture removal of 0.71% mc per hour. This drying process caused no reduction in seed quality as measured by the standard germination, accelerated ageing and field emergence tests. It was concluded that the HPT system is a promising technology for drying peanut seed when efficiency and maintenance of physiological quality are desired.
Resumo:
Excess salts in the root zone inhibit water uptake by plants, affect nutrient uptake and may result in toxicities due to individual salts in the soil solution. Excess exchangeable sodium in the soil may destroy the soil structure to a point where water penetration and root aeration become impossible. Sodium is also toxic to many plants. Beans (Phaseolus vulgaris L.) are consumed as protein source in northeastern Brazil, although little is known about common bean cultivar tolerance to salinity. The germination of bean cultivars under salt stress was studied. The cultivars 'Carioca' and 'Mulatinho' were submitted to germination test in a germinator at 25ºC, at the Seed Analysis Laboratory of the Brazilian Agricultural Research Corporation unit in the Semi- Arid region (Embrapa Semi Árido), Petrolina, Pernambuco State. These seeds were germinated on "germitest" papers imbibed in distilled water or in 10, 50, 100 e 200 mol.m-3sodium chloride (NaCl) solutions. At the first and second counts of the germination test, normal seedlings were counted, measured, weighed and dried, supplying data for vigor, total germination, fresh matter weight and dry matter weight and seedlings length. Total protein was quantified in cotyledons at 3, 6 and 9 days after sowing. The results indicated that the NaCl content influenced seed germination and concentrations above 50 mol.m-3 decreased germination and seedling growth.
Resumo:
Most tropical forage grass species have dormant seeds, which reduce percentages in germination tests. The objective of this study was to evaluate H2SO4 scarification effects on seed dormancy releasing, through germination time (T50) and variability among germination test replicates, in 630, 94 and 82 seed samples of B. brizantha, B. humidicola and P. maximum, respectively, tested at the Central Seed Testing Laboratory, Campinas, Brazil, from 1991 to 1999. Germination tests used two 4 x 100 replicates of intact and scarified seeds (15-, 10-, 5-minute treatments, respectively). Mean germination time (T50) and variability among germination replicates were also analysed. Statistical analysis was performed by t-test paired samples for means. Scarification promoted general decreases in T50, while variability among germination test replicates was reduced in B. brizantha. Scarification increase germination in B. brizantha and P. maximum, but is deleterious in B. humidicola.
Resumo:
The occurrence of green soybean seed due to forced maturation or premature plant death caused by drought or foliar and/or root diseases has been common in several Brazilian production areas. Physiological quality of seed lots with green seed may have their germination and vigor potentials affected and therefore discarded by the grain industry. The objective of this experiment was to determine the maximum tolerated level of green seed in soybean seed lots, which is information of major importance for seed producers when taking the decision whether to sell these lots. Soybean seed of the cultivars CD 206, produced in Ubirata, Parana, and FMT Tucunare, produced in Alto Garças, Mato Grosso, were used in the study. Green seed and yellow seed of both cultivars were mixed in the following proportions: 0%, 3%, 6%, 9%, 12%, 15%, 20%, 30%, 40%, 50%, 75% and 100%. Seed quality was evaluated by the germination, accelerated aging, tetrazolium and electrical conductivity tests. The contents of a, b and total chlorophyll in the seed were also determined. A complete randomized block design in a factorial scheme (two cultivars x 12 levels of green seed) was used. Seed quality was negatively affected and chlorophyll contents incremented with the increase in the percentage of green seed. Seed germination, viability and vigor, measured by the accelerated aging test, were not reduced with levels of up to 3% green seed, for both cultivars. Levels above 6% green seed significantly reduced the quality of the seed. The quality of seed lots with 9% or more green seed was significantly reduced to the point that their commercialization is not recommended.
Resumo:
The objective of this study was to verify the effect of drying on germination of cupuassu (Theobroma grandiflorum (Willd. ex Spreng) K. Schum.) seeds. Desiccation was in forced air oven, with temperature ranging from 23 to 33ºC. Sowing was carried out at 0.5cm of depth in plastic trays in sand and sawdust mixture (1:1), previously sterilized in hot water (100ºC), during 2h. Seeds were left to germinate in a laboratory with no temperature and relative humidity control, under natural light. It was quantified the seed moisture content, in four replications of 10 seeds; the germination percentage, performed during 30 days, with daily counts of the number of germinated seeds; the germination speed index; and number of days to the germination onset. The experimental design was completely randomized with four replications of 25 seeds. The reduction of moisture content from 58.6 to 37.8% did not affect seed germination and germination speed index; however, they were affected when moisture content was reduced to values below 30.7%. It was observed that only when moisture content was 16.1% seeds demanded more days to begin germination. Cupuassu seeds are classified as recalcitrant and they can be desiccated up to 37.8% with no reduction on germination.
Resumo:
Brachiaria species normally show a double seed dormancy mechanism, mainly on fresh-harvested seeds, leading to germination percentages lower than those of viability detected by tetrazolium test (TZ) and causing problems as to storage, trading and seed inspection activities. The adoption of the methodology to detect the constants of the viability equation (high storage temperatures and fixed moisture contents) made feasible in this research to isolate the effects of 40, 50 and 65°C on B. brizantha cultivars Marandu, Mulato 1 and Mulato 2 seed dormancy releasing, after storage with moisture contents ranging from 1.9 and 17.8%. Seed samples presented high dormancy levels, detected by TZ and it was complete and partially released by chemical scarification and accelerated ageing test, respectively. No statistical differences were observed as to the speed of germination (T50); however, differences among cultivars were detected as to number of seed per gram. Sorption and desorption isotherm curves were similar for the cultivars. Seed dormancy releasing was better achieved at 40 and 50°C with mc ranging from 7.6 to 10.8%. The temperature of 50°C appears to be adequate for seed dormancy releasing in all mc analyzed. No significant seed dormancy releasing result was observed at 65°C. The cultivar Marandu presented the highest storability throughout the experiment.
Resumo:
Hot and dry weather conditions during soybean [Glycine max (L.) Merrill] seed maturation can cause forced maturation of the seed, resulting in the production of high levels of green seed, which may be detrimental to seed germination. These stressful conditions were imposed on soybean plants during seed maturation to investigate the production of green seeds and seed quality. Plants of the CD 206 cultivar were grown in a greenhouse until the R5.5 growing stage and then transferred to phytotrons at R6 and R7.2 for stress induction. Plants were subjected to two temperature regimes, high (28ºC to 36ºC) and normal (19ºC to 26ºC), and four soil water availability conditions, control (adequate water supply), 30% gravimetric moisture (GM), 20% GM and no water supply. Seed were harvested at R9. Green seed percentages and 100-seed weights from the lower, middle and upper thirds of each plant were determined. Seed quality was assessed by germination, tetrazolium (viability and vigor) and electrical conductivity tests. Occurrence of green seed varied from 9% to 86%, depending on the severity of the stresses imposed. High temperature, coupled with no water supply at R6, resulted in a pronounced occurrence of green seeds. There was no difference in the percentage of green seeds among the plant segments. Seed quality was negatively affected by the incidence of green seeds. A procedure for screening soybean genotypes in a phytotron for their tolerance and/or susceptibility to the production of green seeds was developed.
Resumo:
This study was done to evaluate the physiological and enzymatic alterations in papaya (Carica papaya L.) seeds during storage period. Seeds were extracted from mature fruits of Formosa group papaya hybrid Tainung 01. The sarcotesta was removed by rubbing the seeds on a wire screen under running water and then dried to the moisture content (MC) of 5, 8 or 11% The seeds were packed in multilayer paper bags, polyethylene bags, aluminum foil pouch and metallic canisters and stored for 15 months under laboratory conditions. Seeds were evaluated, at three month interval, for MC, germination, and the activity of acid phosphotase (AP) and malate dehyrogenase (MDH) was evaluated with the use of amide gel (12%) electrophoresis. The fresh seeds had post-harvest dormancy, which was broken after six month storage. Independent of the package type, the seeds could be stored for 12 months with 8 or 11% MC under ambient conditions. There was no association between seed deterioration and alterations in AP and MDH activity.
Resumo:
Plant breeding is generally done through sexual reproduction even when the species is propagated asexually for commercial exploitation, as for example, in sugarcane. Therefore, the development of procedures to evaluate sugarcane seed viability is important for plant breeding programs. The objective of this research was to develop a methodology for analyzing the viability of sugarcane seeds (Saccharum spp.). Three crosses were used, two biparental crosses and one polycross. For the germination test study, two substrates (paper and sand) and three constant incubation temperatures (25 ºC, 30 ºC and 35 ºC), in the presence of constant light and also an alternating temperatures (20-30 ºC), with 8 hours light (30 ºC) and 16 hours darkness (20 ºC), were studied. Seedlings were evaluated every five days. The results demonstrated that temperature affected sugarcane seed germination with the most favorable conditions being the alternating temperature (20-30 ºC) and the constant temperature of 30 ºC on a paper substrate.
Resumo:
The pearl millet seed is small and its size varies, making sowing more difficult. The pelleting technique increases and homogenizes seed size, but it is essential to determine the physical and physiological characteristics of pelleted seeds. The physiological analysis consisted of: first germination count, final germination, speed emergence index, and seedling emergence. Physical analysis consisted of determining the 1000-seed weight, 1000-seed volume and fragmentation. The control treatment did not receive any coating, and the other 36 treatments combined four binders: bentonite, polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and methyl cellulose (Methocel®), and nine powder coating products: microcellulose, plaster, vermiculite, magnesium thermophosphate (Yoorin®), phytic acid, dicalcium phosphate, super simple phosphate (SS), monoamonic phosphate (MAP) and reactive phosphate. Among the materials used to form the pearl millet pellet, the most efficient binders were the polyvinyl acetate and the methyl cellulose, and as coaters, the vermiculite and the microcellulose.
Resumo:
The effect of chemical and biological treatments on castor bean emergence, seedling vigor, dry matter production, and also the control of microorganisms associated with seeds of the AL Guarany 2002 and Lyra cultivars, was evaluated. The products tested were carbendazim + thiram, carboxin + thiram and a product based on Trichoderma. Total seed and seedling emergence were evaluated at 27 days after sowing whereas dry matter production was verified for plants removed 45 days after sowing. The Guarany 2002 AL cultivar had a higher incidence of microorganisms than the Lyra cultivar. The chemical treatment was 100% effective in controlling fungi but the biological treatment did not reduce microorganism incidence on the seeds. Chemical treatment resulted in plants with more dry matter and the best results were for carbendazim + thiram and carboxin + thiram at doses of 60 g + 140 g and 50 g + 50 g/100 kg of seeds, respectively. The carbendazim + thiram mixture was the only treatment which was statistically higher for total emergence whereas the biological treatment increased emergence only for the Lyra cultivar, thus demonstrating its lower efficiency. The importance of fungicides to control pathogens associated with seeds was discussed.