776 resultados para geographical information systems (GIS)
Resumo:
This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.
Resumo:
This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.
Resumo:
Seismic hazard and microzonation of cities enable to characterize the potential seismic areas that need to be taken into account when designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of geotechnical microzonation maps has been attempted using Geographical Information System (GIS). GIS will provide an effective solution for integrating different layers of information thus providing a useful input for city planning and in particular input to earthquake resistant design of structures in an area. Seismic hazard is the study of expected earthquake ground motions at any point on the earth. Microzonation is the process of sub division of region in to number of zones based on the earthquake effects in the local scale. Seismic microzonation is the process of estimating response of soil layers under earthquake excitation and thus the variation of ground motion characteristic on the ground surface. For the seismic microzonation, geotechnical site characterization need to be assessed at local scale (micro level), which is further used to assess of the site response and liquefaction susceptibility of the sites. Seismotectonic atlas of the area having a radius of 350km around Bangalore has been prepared with all the seismogenic sources and historic earthquake events (a catalogue of about 1400 events since 1906). We have attempted to carryout the site characterization of Bangalore by collating conventional geotechnical boreholes data (about 900 borehole data with depth) and integrated in GIS. 3-D subsurface model of Bangalore prepared using GIS is shown in Figure 1.Further, Shear wave velocity survey based on geophysical method at about 60 locations in the city has been carried out in 220 square Kms area. Site response and local site effects have been evaluated using 1-dimensional ground response analysis. Spatial variability of soil overburden depths, ground surface Peak Ground Acceleration’s(PGA), spectral acceleration for different frequencies, liquefaction susceptibility have been mapped in the 220 sq km area using GIS.ArcInfo software has been used for this purpose. These maps can be used for the city planning and risk & vulnerability studies. Figure 2 shows a map of peak ground acceleration at rock level for Bangalore city. Microtremor experiments were jointly carried out with NGRI scientists at about 55 locations in the city and the predominant frequency of the overburden soil columns were evaluated.
Resumo:
Uttara Kannada is the only district in Karnataka, which has a forested area of about 80% and falls in the region of the Western Ghats. It is considered to be a very resourceful in terms of abundant natural resources and constitutes an important district in Karnataka. The forest resources of the district are under pressure as a large portion of the forested area has been converted to non-forestry activities since independence owing to the increased demands from human and animal population resulting in degradation of the forest ecosystem. This has led to poor productivity and regenerative capacity which is evident in the form of barren hill tops, etc in Coastal taluks of Uttara Kannada, entailing regular monitoring of the forest resources very essential. The classification of forest is a prerequisite for managing forest resources. Geographical Information System (GIS), allows the spatial and temporal analysis of the features of interest, and helps in solving the problem of deforestation and associated environmental and ecological problems. Spatial and temporal tools such as GIS and remotely sensed data helps the planners and decision makers in evolving the sustainable strategies for management and conservation of natural resources. Uttara Kannada district was classified on the basis of the land-use using supervised hard classifiers. The land use categories identified were urban area, water bodies, agricultural land, forest cover, and waste land. Further classification was carried out on the basis of forest type. The types of forest categorised were semi-evergreen, evergreen, moist deciduous, dry deciduous, plantations and scrub, thorny and non-forested area. The identified classes were correlated with the ground data collected during field visits. The observed results were compared with the historic data and the changes in the forest cover were analysed. From the assessment made it was clear that there has been a considerable degree of forest loss in certain areas of the district. It was also observed that plantations and social forests have increased drastically over the last fifteen years,and natural forests have declined.
Resumo:
Providing on line travel time information to commuters has become an important issue for Advanced Traveler Information Systems and Route Guidance Systems in the past years, due to the increasing traffic volume and congestion in the road networks. Travel time is one of the most useful traffic variables because it is more intuitive than other traffic variables such as flow, occupancy or density, and is useful for travelers in decision making. The aim of this paper is to present a global view of the literature on the modeling of travel time, introducing crucial concepts and giving a thorough classification of the existing tech- niques. Most of the attention will focus on travel time estimation and travel time prediction, which are generally not presented together. The main goals of these models, the study areas and methodologies used to carry out these tasks will be further explored and categorized.
Resumo:
Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.)