691 resultados para genistoid clade
Resumo:
We sequenced 998 base pairs (bp) of mitochondrial DNA cytochrome b and 799 bp of nuclear gene BRCA1 in the Lesser white-toothed shrew (Crocidura suaveolens group) over its geographic range from Portugal to Japan. The aims of the study were to identify the main clades within the group and respective refugia resulting from Pleistocene glaciations. Analyses revealed the Asian lesser white-toothed shrew (C. shantungensis) as the basal clade, followed by a major branch of C. suaveolens, subdivided sensu stricto into six clades, which split-up in the Upper Pliocene and Lower Pleistocene (1.9-0.9 Myr). The largest clade, occurring over a huge range from east Europe to Mongolia, shows evidence of population expansion after a bottleneck. West European clades originated from Iberian and Italo-Balkanic refugia. In the Near East, three clades evolved in an apparent hotspot of refugia (west Turkey, south-west and south-east of the Caucasus). Most clades include specimens of different morphotypes and the validity of many taxa in the C. suaveolens group has to be re-evaluated.
Resumo:
BACKGROUND AND AIMS: The genus Olea (Oleaceae) includes approx. 40 taxa of evergreen shrubs and trees classified in three subgenera, Olea, Paniculatae and Tetrapilus, the first of which has two sections (Olea and Ligustroides). Olive trees (the O. europaea complex) have been the subject of intensive research, whereas little is known about the phylogenetic relationships among the other species. To clarify the biogeographical history of this group, a molecular analysis of Olea and related genera of Oleaceae is thus necessary. METHODS: A phylogeny was built of Olea and related genera based on sequences of the nuclear ribosomal internal transcribed spacer-1 and four plastid regions. Lineage divergence and the evolution of abaxial peltate scales, the latter character linked to drought adaptation, were dated using a Bayesian method. KEY RESULTS: Olea is polyphyletic, with O. ambrensis and subgenus Tetrapilus not sharing a most recent common ancestor with the main Olea clade. Partial incongruence between nuclear and plastid phylogenetic reconstructions suggests a reticulation process in the evolution of subgenus Olea. Estimates of divergence times for major groups of Olea during the Tertiary were obtained. CONCLUSIONS: This study indicates the necessity of revising current taxonomic boundaries in Olea. The results also suggest that main lines of evolution were promoted by major Tertiary climatic shifts: (1) the split between subgenera Olea and Paniculatae appears to have taken place at the Miocene-Oligocene boundary; (2) the separation of sections Ligustroides and Olea may have occurred during the Early Miocene following the Mi-1 glaciation; and (3) the diversification within these sections (and the origin of dense abaxial indumentum in section Olea) was concomitant with the aridification of Africa in the Late Miocene.
Resumo:
A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.
Resumo:
Numerous in vitro studies attribute to human TRIM5α some modest anti-HIV-1 activity and human population studies suggest some differential effect of TRIM5α polymorphisms on disease progression. If the activity of TRIM5α were relevant in vivo, it could result in positive selection on the viral capsid. To address this issue, we identified 10 positively selected sites in HIV-1 capsid from multiple viral strains and generated 17 clade B viruses carrying a minor (i.e. low frequency) residue or an alanine at those positions. All recombinant viruses were susceptible to the modest effect of common human TRIM5α and allelic variants R136Q, and H419Y; H43Y and G249D TRIM5α were generally inactive. Increased sensitivity to TRIM5α was observed for some capsid variants, suggesting that minor residues are selected against in human populations. On the other hand, the modest potency of human TRIM5α does not translate in escape mutations in the viral capsid.
Resumo:
Background: The poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B) is currently used as a HIV/AIDS vaccine candidate. A general strategy to try to improve the immunogenicity of poxvirus HIV-1 vaccine candidates is the deletion of known or suggested immunomodulatory vaccinia virus (VACV) genes.Methods: We have generated and characterized the innate immune sensing and the immunogenicity profile of a new HIV-1 vaccine candidate, which contains a deletion in a VACV gene.Results: We show that this VACV protein is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of this VACV gene from the MVA-B had no effect on virus growth kinetics; therefore this VACV protein is not essential for virus replication. The innate immune signals elicited by the MVA-B deletion mutant in human macrophages and monocyte-derived dendritic cells were characterized. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that the MVA-B deletion mutant enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4 + and CD8 + T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8 + T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8 + T-cell responses, the MVA-B deletion mutant induced more GPN-specific CD8 + T-cell responses. Furthermore, the MVA-B deletion mutant enhanced the levels of antibodies against Env in comparison with MVA-B.Conclusion: These findings revealed that this new VACV protein can be considered as an immunomodulator and that deleting this gene in MVA-B confers an immunological benefit by inducing innate immune responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Resumo:
The HIV vaccine strategy that, to date, generated immune protection consisted of a prime-boost regimen using a canarypox vector and an HIV envelope protein with alum, as shown in the RV144 trial. Since the efficacy was weak, and previous HIV vaccine trials designed to generate antibody responses failed, we hypothesized that generation of T cell responses would result in improved protection. Thus, we tested the immunogenicity of a similar envelope-based vaccine using a mouse model, with two modifications: a clade C CN54gp140 HIV envelope protein was adjuvanted by the TLR9 agonist IC31®, and the viral vector was the vaccinia strain NYVAC-CN54 expressing HIV envelope gp120. The use of IC31® facilitated immunoglobulin isotype switching, leading to the production of Env-specific IgG2a, as compared to protein with alum alone. Boosting with NYVAC-CN54 resulted in the generation of more robust Th1 T cell responses. Moreover, gp140 prime with IC31® and alum followed by NYVAC-CN54 boost resulted in the formation and persistence of central and effector memory populations in the spleen and an effector memory population in the gut. Our data suggest that this regimen is promising and could improve the protection rate by eliciting strong and long-lasting humoral and cellular immune responses.
Resumo:
As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.
Resumo:
Ecological speciation and its hallmark, adaptive radiation is a process from which most of the current biodiversity derives. As ecological opportunity allows species to colonise unoccupied niches, natural selection drives adaptive phenotypical change. In this thesis, I begin by describing how this evolutionary process acted on the evolution of the clownfishes. During its infancy, this iconic group of coral reef fishes developed a mutualism with sea anemone species. I show how this event triggered the evolutionary radiation of the group, generating species that now inhabit diverse habitats of the coral reefs. Following the appearance of the mutualism, the diversification of the clownfish was catalysed by hybridisation events which shuffled genes, allowing hybrids to reach new fitness optima. While the clownfishes appeared in the region of the coral triangle, a lineage colonised the eastern shores of Africa. I reconstructed the geographic history of the group and showed that this event lead to the rapid appearance of new species, replicating the evolutionary patterns of the original radiation. To better grasp the mechanisms of ecological speciation, I conducted analyses at the population level and identified similar evolutionary patterns than found at the clade level. I discuss how such result suggests a continuity bridging micro- and macroevolution, which so far only been theorised. In parallel to this study case, I question whether biotic and abiotic interactions can promote or restrain ecological speciation. Indeed, I show how the ecological setting of species can drastically impact on their diversification dynamics. Moreover, tradeoffs can occur between specialisation made on different ecological axes allowing species cohabitation. Overall, I show in this work that regardless of the few simple rules that explain the mechanism of ecological speciation, the unavoidable interactions with the ever changing ecological context lead diversification events to give always a different outcome. It is thus primordial to account for the ecological settings of species when discussing their evolutionary dynamics. LA SPÉCIATION ÉCOLOGIQUE RACONTÉE AU TRAVERS DE L'ÉTUDE DE L'ÉVOLUTION DES POISSONS-CLOWNS ET DE QUELQUES AUTRES Le phénomène de spéciation écologique est à l'origine de la majeure partie de la biodiversité que l'on rencontre aujourd'hui. Au fil des opportunités qu'elles rencontrent, les espèces colonisent l'espace écologique laissant la sélection naturelle forger leur phénotype moyen. Malgré l'omniprésence de ce phénomène dans la nature, beaucoup de questions qui lui sont relatives restent à élucider. C'est afin de mieux comprendre ce mécanisme que j'étudie les poissons-clowns, célèbres habitants des récifs coralliens. Dans ce travail, je démontré que le développement du comportement mutualiste liant les poissons-clowns aux anémones de mer fut l'événement qui déclencha leur diversification. Suite à ce premier événement, j'illustre comment l'hybridation entre lignées primordiales a remodelé la diversité génétique du groupe et catalysé leur radiation évolutive. Je poursuis en reconstruisant l'expansion géographique des poissons-clowns au cours du temps depuis le triangle de corail, leur lieu d'origine, jusqu'aux côtes d'Afrique de l'Ouest. Afin d'affiner ces analyses générales sur le groupe, je continue en étudiant plus finement des populations d'une seule espèce de poisson-clown. Cette fine résolution me permet de comprendre plus précisément quels sont les facteurs écologiques qui permettent aux poissons-clowns de se différencier. Les résultats de ces analyses suggèrent qu'il est important de comprendre les liens entre le contexte écologique et la diversification des espèces. J'étudie cette question dans la seconde partie de ce travail en montrant que l'hétérogénéité du paysage ou les liens entretenus avec un partenaire mutualiste influencent fortement la dynamique évolutive des espèces. Finalement, j'illustre les compromis que chaque espèce réalise en se spécialisant ou non dans ses interactions avec l'environnent. Plus généralement, je souligne dans ce travail l'influence du contexte écologique sur le résultat de la spéciation écologique. Ce sont ces interactions entre les organismes et leur environnent qui sont à l'origine de l'incroyable diversité de la vie. Il est donc primordial de les prendre en compte lors de l'étude de l'évolution des espèces.
Resumo:
Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
Aim A debate exists as to whether present-day diversity gradients are governed by current environmental conditions or by changes in environmental conditions through time. Recent studies have shown that latitudinal richness gradients might be partially caused by incomplete post-glacial recolonization of high-latitude regions; this leads to the prediction that less mobile taxa should have steeper gradients than more mobile taxa. The aim of this study is to test this prediction. Location Europe. Methods We first assessed whether spatial turnover in species composition is a good surrogate for dispersal ability by measuring the proportion of wingless species in 19 European beetle clades and relating this value to spatial turnover (beta sim) of the clade. We then linearly regressed beta sim values of 21 taxa against the slope of their respective diversity gradients. Results A strong relationship exists between the proportion of wingless species and beta sim, and beta sim was found to be a good predictor of latitudinal richness gradients. Main conclusions Results are consistent with the prediction that poor dispersers have steeper richness gradients than good dispersers, supporting the view that current beetle diversity gradients in Europe are affected by post-glacial dispersal lags.
Resumo:
Résumé: Les vipères du genre Vipera sont des serpents venimeux distribués dans la totalité du Paléarctique. Malgré cette répartition considérable, elles sont extrêmement menacées, leur déclin étant principalement dû à la destruction et à la fragmentation de leur habitat ainsi qu'à la persécution humaine. Afin d'apporter de nouveaux éléments dans le contexte de la protection de ce groupe de reptiles, nous avons utilisé durant ce travail de thèse différents marqueurs moléculaires pour étudier la structuration génétique à petite et à large échelle chez trois espèces appartenant au genre Vipera. La première étude, une phylogéographie moléculaire de la vipère ammodytes (Vipera ammodytes), a montré dans l'ensemble de l'aire de répartition une forte structuration génétique provenant d'isolements antérieures au Pléistocène. La présence d'un nombre important de clades dans le centre des Balkans suggère que cette région a fourni de nombreux refuges isolés durant les glaciations. Ces dernières ont également eu un impact considérable sur la diversité génétique au sein de la majorité des clades, suite à d'importants goulots d'étranglement durant le Pléistocène. L'étude de la phylogéographie de la vipère aspic (Vipera aspis) a montré une différenciation génétique entre les populations présentes de chaque côté des Alpes, mais également une forte structuration interne avec la mise en évidence d'un refuge en France. Cette étude est la première à établir clairement l'utilisation d'un refuge français pour un vertébré terrestre. La troisième partie de cette thèse a étudié la phylogéographie de la vipère péliade (Vipera berus), espèce cible de ce travail. En plus de la mise en évidence d'un groupe génétique inattendu (localisé dans le nord de l'Italie, le sud de l'Autriche, le nord de la Slovénie et l'extrême sud-est de la Suisse), la variabilité génétique au sein du groupe nordique (comprenant les animaux de l'entier de l'aire de répartition de l'espèce à l'exception des individus du groupe italien et les animaux provenant des Balkans) est suffisamment importante pour conclure à l'utilisation de refuges glaciaires nordiques durant les dernières glaciations, en complément des refuges habituellement décrits pour la majorité des espèces animales (soit les péninsules ibérique, italienne et balakanique). Ces résultats nous ont conduit à effectuer une étude morphologique (quatrième partie) comparant les vipères péliades du "clade italien" et du "clade nordique" décrits ci-dessus. Seules de petites différences morphologiques ont pu être mises en évidence, malgré une séparation de ces groupes estimée à plus d'un million d'années. Une étude à plus petite échelle, centrée sur le Massif jurassien et certaines populations alpines et françaises, a été entreprise afin d'estimer leur diversité génétique et d'évaluer la structuration génétique entre les populations à l'aide de marqueurs microsatellites (cinquième partie). Une importante structuration a été observée entre les populations distantes de plus de 3 kilomètres, la structuration entre les populations plus proches étant plus limitée. De plus, une diversité génétique plus faible dans les populations jurassiennes et alpines comparativement aux populations du massif central et de la côte atlantique a été constatée, probablement due à une perte de diversité génétique lors de la recolonisation post-glaciaire. La sixième étude s'est intéressée au succès reproducteur des mâles de vipères péliades en conditions naturelles. Une corrélation entre la taille des mâles et leur succès reproducteur a été relevée, les individus de plus grande taille ayant un succès reproducteur plus élevé. Le taux de multipaternité a aussi été investigué, démontrant que la proportion de pontes issues de plusieurs pères est élevée (69%) malgré la faible densité de vipères observée sur le site étudié. Finalement, aucun lien entre le nombre de pères au sein d'une ponte et la mortalité des jeunes à la naissance n'a pu être mis en évidence, contrastant avec des travaux précédents. En conclusion, l'observation de la structuration très marquée chez les vipères péliades devrait permettre d'affiner les méthodes de protection de l'espèce dans le massif jurassien. A plus large échelle, l'importante structuration génétique observée chez les vipères ammodytes, aspic et péliade résultant de l'utilisation de nombreux refuges glaciaires, complémentaires aux refuges habituellement utilisés par les espèces animales, démontre l'intérêt de l'analyse phylogéographique des reptiles pour la compréhension des phénomènes de colonisation et d' extinction des populations durant la fin du Tertiaire et le Quaternaire. La mise en évidence chez les différentes espèces de vipères étudiées de nombreux groupes génétiques distincts (ESUs) devrait conduire à des modifications de la taxonomie ainsi qu'au statut de protection de ces espèces. Abstract: The vipers of the genus Vipera are venomous snakes widespread throughout the Palaearctic regions. Despite a large distribution area, several species are extremely threatened, especially due to the destruction and fragmentation of their habitats, as well as by human persecution. In order to increase the knowledge on these species and to improve their protection, several molecular markers have been used to investigate the genetic structure on small and large scales, within three species of the genus Vipera. The first study, a molecular phylogeography of the nose-horned viper (Vipera ammodytes), showed a considerable structuring throughout the distribution area, due to isolation into refugia before the Pleistocene. A high number of clades in the centre of the Balkans suggests that this region harboured numerous isolated glacial refugia during the last glaciation. Moreover, low genetic diversity within several clades implies that most populations of nose-horned vipers have suffered bottlenecks during the Pleistocene. The study of the phylogeography of the asp viper (Vipera aspis) showed genetic differentiation between populations on each side of the Alps, as well as considerable internal genetic structure, suggesting the use of a glacial refugium in France. This study is the first to establish firmly the occurrence of a French refugia for a terrestrial vertebrate. The third part of this work involved a phylogeographic study of the adder (Vipera berus), the target species of this thesis. Three clades were revealed: a Balkan clade (corresponding to the subspecies V. b. sachalinensis), an unexpected Italian clade (limited to northern Italy, southern Austria, northern Slovenia and southeasternmost corner of Switzerland) and a Northern clade clade (including adders of the whole distribution area excepted animals from the Balkan and the Italian clades). The genetic variability within the Northern clade is sufficiently high to conclude that a northern glacial refugia during the last glaciation, in addition to those refugia already described for the main species (Iberian, Italian and Balkan peninsula). These results motivated a morphological study (part four) comparing the adders from the Italian and the Northern clades describe above. Only small morphological differences have been found, despite the split between these two clades have taken place more than 1 million years ago. A study on a local scale, focused on the Jura Mountains, on a few populations in the Alps and France was, performed to estimate the genetic diversity and the genetic structure between populations using microsatellite markers (part five). Considerable structure was observed between populations separated by more than 3 kilometres, whereas the structure between closer populations is less marked. Moreover, lower genetic diversity in the populations from Jura Mountains and Alps was noticed compared to populations from Massif Central of Atlantic coast. Such loss of genetic variation probably followed post-glacial recolonisation. The sixth study focused on the reproductive success of male adders in the wild. A positive correlation between body length and reproductive success was observed. Multiple paternity was also observed in most of clutches (69%) despite the low density of adders in the study area. Finally, no relationship was found between the number of fathers in a clutch and the survival of offspring at birth, contradicting previous studies. To conclude, the observation of a significant genetic structure in Vipera berus will enable recommendations to be made to improve protection of this species in the Jura Mountain. On a larger scale, the considerable genetic structure found within Vipera ammdoytes, V. aspis and V. berus, resulting from isolation in additional glacial refugia to those already described for other species, demonstrates the relevance of phylogeographic studies of reptiles to better understand the colonisation and disappearance during the last Tertiary and the Quaternary. The observation of several groups of evolutionary significant units (ESUs) within the three studied species might lead to a revision of the taxonomy, as well as their conservation status.
Resumo:
An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Resumo:
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.