957 resultados para galaxies: spiral
Resumo:
We review the evidence that the ultra-compact dwarf (UCD) galaxies we recently discovered in the Fornax Cluster form a new, previously unknown class of galaxies and we discuss possible scenarios for their formation. We then present recent results that UCDs are also present in the Virgo Cluster, and that there is a much larger than expected population of fainter UCDs in the Fornax Cluster. The size and properties of this population may lead us to revise our original 'galaxy threshing' hypothesis for the formation of UCDs.
Resumo:
The Hi content of Hickson Compact Groups in the southern hemisphere is measured using data from the Hi Parkes All-Sky Survey (HIPASS), and dedicated observations using the narrow band filter on the Multibeam instrument on the Parkes telescope. The expected Hi mass of these groups was estimated using the luminosity, diameter, and morphological types of the member galaxies, calibrated from published data. Taking careful account of non-detection limits, the results show that the compact group population that has been detected by these observations has an Hi content similar to that of galaxies in the reference field sample. The upper limits for the undetected groups lie within the normal range; improvement of these limits will require a large increase in sensitivity.
Resumo:
We present new results of our wide-field redshift survey of galaxies in a 182 square degree region of the Shapley Supercluster (SSC) based on observations with the FLAIR-II spectrograph on the UK Schmidt Telescope (UKST). In this paper we present new measurements to give a total sample of redshifts for 710 bright (R less than or equal to 16.6) galaxies, of which 464 are members of the SSC (8000 < υ < 18 000 km s(-1)). Our data reveal that the main plane of the SSC (upsilon approximate to 14 500 km s(-1)) extends further than previously realised, filling the whole extent of our survey region of 10 degrees by 20 degrees on the sky (35 Mpc by 70 Mpc, for H-0 = 75 km s(-1) Mpc(-1)). There is also a significant structure associated with the slightly nearer Abell 3571 cluster complex (upsilon approximate to 12 000 km s(-1)) with a caustic structure evident out to a radius of 6 Mpc. These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at (V) over bar = 15 000 km s(-1) near RA = 13(h). They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. We calculate galaxy overdensities of 5.0+/-0.1 over the 182 square degree region surveyed and 3.3+.-0.1 in a 159 square degree region excluding rich clusters. Over the large region of our survey the inter-cluster galaxies make up 46 per cent of all galaxies in the SSC region and may contribute a similar amount of mass to the cluster galaxies.
Resumo:
We present the largest catalogue to date of optical counterparts for H I radio-selected galaxies, HOPCAT. Of the 4315 H I radio-detected sources from the H I Parkes All Sky Survey (HIPASS) catalogue, we find optical counterparts for 3618 (84 per cent) galaxies. Of these, 1798 (42 per cent) have confirmed optical velocities and 848 (20 per cent) are single matches without confirmed velocities. Some galaxy matches are members of galaxy groups. From these multiple galaxy matches, 714 (16 per cent) have confirmed optical velocities and a further 258 (6 per cent) galaxies are without confirmed velocities. For 481 (11 per cent), multiple galaxies are present but no single optical counterpart can be chosen and 216 (5 per cent) have no obvious optical galaxy present. Most of these 'blank fields' are in crowded fields along the Galactic plane or have high extinctions. Isolated 'dark galaxy' candidates are investigated using an extinction cut of A(Bj) < 1 mag and the blank-fields category. Of the 3692 galaxies with an A(Bj) extinction < 1 mag, only 13 are also blank fields. Of these, 12 are eliminated either with follow-up Parkes observations or are in crowded fields. The remaining one has a low surface brightness optical counterpart. Hence, no isolated optically dark galaxies have been found within the limits of the HIPASS survey.
Resumo:
Filaments of galaxies are the dominant feature of modern large-scale redshift surveys. They can account for up to perhaps half of the baryonic mass budget of the Universe and their distribution and abundance can help constrain cosmological models. However, there remains no single, definitive way in which to detect, describe, and define what filaments are and their extent. This work examines a number of physically motivated, as well as statistical, methods that can be used to define filaments and examines their relative merits.
Resumo:
We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS-2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is sigma similar to 0.03 for redshifts less than 0.55 and worsens at higher redshift (similar to 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.
Resumo:
We have discovered nine ultracompact dwarf galaxies (UCDs) in the Virgo Cluster, extending samples of these objects outside the Fornax Cluster. Using the Two Degree Field (2dF) multifiber spectrograph on the Anglo-Australian Telescope, the new Virgo members were found among 1500 color-selected, starlike targets with 16: 0 < b(j) < 20.2 in a 2 degrees diameter field centered on M87 (NGC 4486). The newly found UCDs are comparable to the UCDs in the Fornax Cluster, with sizes less than or similar to 100 pc, -12.9 < M-B < -10.7, and exhibiting red absorption-line spectra, indicative of an older stellar population. The properties of these objects remain consistent with the tidal threshing model for the origin of UCDs from the surviving nuclei of nucleated dwarf elliptical galaxies disrupted in the cluster core but can also be explained as objects that were formed by mergers of star clusters created in galaxy interactions. The discovery that UCDs exist in Virgo shows that this galaxy type is probably a ubiquitous phenomenon in clusters of galaxies; coupled with their possible origin by tidal threshing, the UCD population is a potential indicator and probe of the formation history of a given cluster. We also describe one additional bright UCD with M-B = -12.0 in the core of the Fornax Cluster. We find no further UCDs in our Fornax Cluster Spectroscopic Survey down to bj 19.5 in two additional 2dF fields extending as far as 3 degrees from the center of the cluster. All six Fornax bright UCDs identified with 2dF lie within 0.degrees 5 (projected distance of 170 kpc) of the central elliptical galaxy NGC 1399.
Resumo:
We present new measurements of the luminosity function (LF) of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) and the 2dF SDSS LRG and Quasar (2SLAQ) survey. We have carefully quantified, and corrected for, uncertainties in the K and evolutionary corrections, differences in the colour selection methods, and the effects of photometric errors, thus ensuring we are studying the same galaxy population in both surveys. Using a limited subset of 6326 SDSS LRGs (with 0.17 < z < 0.24) and 1725 2SLAQ LRGs (with 0.5 < z < 0.6), for which the matching colour selection is most reliable, we find no evidence for any additional evolution in the LRG LF, over this redshift range, beyond that expected from a simple passive evolution model. This lack of additional evolution is quantified using the comoving luminosity density of SDSS and 2SLAQ LRGs, brighter than M-0.2r - 5 log h(0.7) = - 22.5, which are 2.51 +/- 0.03 x 10(-7) L circle dot Mpc(-3) and 2.44 +/- 0.15 x 10(-7) L circle dot Mpc(-3), respectively (< 10 per cent uncertainty). We compare our LFs to the COMBO-17 data and find excellent agreement over the same redshift range. Together, these surveys show no evidence for additional evolution (beyond passive) in the LF of LRGs brighter than M-0.2r - 5 log h(0.7) = - 21 ( or brighter than similar to L-*).. We test our SDSS and 2SLAQ LFs against a simple 'dry merger' model for the evolution of massive red galaxies and find that at least half of the LRGs at z similar or equal to 0.2 must already have been well assembled (with more than half their stellar mass) by z similar or equal to 0.6. This limit is barely consistent with recent results from semi-analytical models of galaxy evolution.
Resumo:
We present a detailed investigation into the recent star formation histories of 5697 luminous red galaxies (LRGs) based on the H delta (4101 angstrom), and [O II] (3727 angstrom) lines and the D4000 index. LRGs are luminous (L > 3L*) galaxies which have been selected to have photometric properties consistent with an old, passively evolving stellar population. For this study, we utilize LRGs from the recently completed 2dF-SDSS LRG and QSO Survey (2SLAQ). Equivalent widths of the H delta and [O II] lines are measured and used to define three spectral types, those with only strong H delta absorption (k+a), those with strong [O II] in emission (em) and those with both (em+a). All other LRGs are considered to have passive star formation histories. The vast majority of LRGs are found to be passive (similar to 80 per cent); however, significant numbers of k+a (2.7 per cent), em+a (1.2 per cent) and em LRGs (8.6 per cent) are identified. An investigation into the redshift dependence of the fractions is also performed. A sample of SDSS MAIN galaxies with colours and luminosities consistent with the 2SLAQ LRGs is selected to provide a low-redshift comparison. While the em and em+a fractions are consistent with the low-redshift SDSS sample, the fraction of k+a LRGs is found to increase significantly with redshift. This result is interpreted as an indication of an increasing amount of recent star formation activity in LRGs with redshift. By considering the expected lifetime of the k+a phase, the number of LRGs which will undergo a k+a phase can be estimated. A crude comparison of this estimate with the predictions from semi-analytic models of galaxy formation shows that the predicted level of k+a and em+a activities is not sufficient to reconcile the predicted mass growth for massive early types in a hierarchical merging scenario.
Resumo:
We present an application of Mathematical Morphology (MM) for the classification of astronomical objects, both for star/galaxy differentiation and galaxy morphology classification. We demonstrate that, for CCD images, 99.3 +/- 3.8% of galaxies can be separated from stars using MM, with 19.4 +/- 7.9% of the stars being misclassified. We demonstrate that, for photographic plate images, the number of galaxies correctly separated from the stars can be increased using our MM diffraction spike tool, which allows 51.0 +/- 6.0% of the high-brightness galaxies that are inseparable in current techniques to be correctly classified, with only 1.4 +/- 0.5% of the high-brightness stars contaminating the population. We demonstrate that elliptical (E) and late-type spiral (Sc-Sd) galaxies can be classified using MM with an accuracy of 91.4 +/- 7.8%. It is a method involving fewer 'free parameters' than current techniques, especially automated machine learning algorithms. The limitation of MM galaxy morphology classification based on seeing and distance is also presented. We examine various star/galaxy differentiation and galaxy morphology classification techniques commonly used today, and show that our MM techniques compare very favourably.
Resumo:
Buried, micro-structured waveguides with an equiangular spiral geometry, which can be formed in a lithium niobate crystal by direct femtosecond laser writing, are analysed with the full-vectorial finite element method. The guiding properties of such waveguides are presented.
Resumo:
Abstract We recorded MEG responses from 17 participants viewing random-dot patterns simulating global optic flow components (expansion, contraction, rotation, deformation, and translation) and a random motion control condition. Theta-band (3–7 Hz), MEG signal power was greater for expansion than the other optic flow components in a region concentrated along the calcarine sulcus, indicating an ecologically valid, foveo-fugal bias for unidirectional motion sensors in V1. When the responses to the optic flow components were combined, a decrease in MEG beta-band (17–23 Hz) power was found in regions extending beyond the calcarine sulcus to the posterior parietal lobe (inferior to IPS), indicating the importance of structured motion in this region. However, only one cortical area, within or near the V5/hMT+ complex, responded to all three spiral-space components (expansion, contraction, and rotation) and showed no selectivity for global translation or deformation: we term this area hMSTs. This is the first demonstration of an exclusive region for spiral space in the human brain and suggests a functional role better suited to preliminary analysis of ego-motion than surface pose, which would involve deformation. We also observed that the rotation condition activated the cerebellum, suggesting its involvement in visually mediated control of postural adjustment.
Resumo:
Stimuli from one family of complex motions are defined by their spiral pitch, where cardinal axes represent signed expansion and rotation. Intermediate spirals are represented by intermediate pitches. It is well established that vision contains mechanisms that sum over space and direction to detect these stimuli (Morrone et al., Nature 376 (1995) 507) and one possibility is that four cardinal mechanisms encode the entire family. We extended earlier work (Meese & Harris, Vision Research 41 (2001) 1901) using subthreshold summation of random dot kinematograms and a two-interval forced choice technique to investigate this possibility. In our main experiments, the spiral pitch of one component was fixed and that of another was varied in steps of 15° relative to the first. Regardless of whether the fixed component was aligned with cardinal axes or an intermediate spiral, summation to-coherence-threshold between the two components declined as a function of their difference in spiral pitch. Similar experiments showed that none of the following were critical design features or stimulus parameters for our results: superposition of signal dots, limited life-time dots, the presence of speed gradients, stimulus size or the number of dots. A simplex algorithm was used to fit models containing mechanisms spaced at a pitch of either 90° (cardinal model) or 45° (cardinal+model) and combined using a fourth-root summation rule. For both models, direction half-bandwidth was equated for all mechanisms and was the only free parameter. Only the cardinal+model could account for the full set of results. We conclude that the detection of complex motion in human vision requires both cardinal and spiral mechanisms with a half-bandwidth of approximately 46°. © 2002 Elsevier Science Ltd. All rights reserved.